Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - Алекс Беллос 4 стр.


Мне очень нравятся две его задачи, описанные ниже. Первая  из серии «детектив» или, скорее, «ищите женщину». Вторая  остроумная дань традиционным загадкам о родстве.


Ответ

Школа святого Дандерхеда в Фогуэлле славится своими успехами в хоккее, но не правдивостью учениц. Недавно команда First XI сыграла в Дидлхэме матч, после которого девочкам разрешили пойти на концерт. После концерта учительница мисс Прай собрала команду; она видела, как десять девочек вышли из концертного зала, а одна  из кинотеатра. На вопрос мисс Прай о том, кто был в кинотеатре, ученицы ответили так:


Джоан Джаггинс: Это была Джоан Твигг.

Герти Гасс: Это была я.

Бесси Блант: Герти Гасс лжет.

Салли Шарп: Герти Гасс и Джоан Джаггинс лгут.

Мэри Смит: Это была Бесси Блант.

Дороти Смит: Это не были ни Бесси, ни я.

Китти Смит: Это не была ни одна из девочек по фамилии Смит.

Джоан Твигг: Это не были ни Бесси Блант, ни Салли Шарп.

Джоан Форсайт: Две другие Джоан лгут.

Лора Лэм: Только одна из девочек по фамилии Смит говорит правду.

Флора Фламмери: Нет, две девочки по фамилии Смит говорят правду.


Учитывая, что из этих одиннадцати утверждений по меньшей мере семь не соответствуют действительности, выясните, кто же ходил в кино?

Ответ

Наверное, в Кинслидейле не так уж много молодых женщин, поскольку каждый из пяти мужчин женился на овдовевшей матери одного из них. Пасынок Дженкинса Томкинс  отчим Перкинса. Мать Дженкинса  подруга миссис Уоткинс, мать мужа которой  кузина миссис Перкинс.

Какая фамилия у пасынка Симкинса?

Логические задачи наподобие представленных выше в настоящее время широко известны как табличные головоломки, потому что их лучше всего решать с помощью таблицы, в которой следует отобразить все возможные варианты. Самая знаменитая головоломка такого типа  задача о зебре  появилась в 1960-х годах; ее автор неизвестен.

Впервые задача о зебре была опубликована в американском журнале Life International в 1962 году. Ее часто называют загадкой Эйнштейна, поскольку считается, что ее придумал именно он. Это было бы весьма впечатляюще, учитывая, что великий ученый умер в 1955 году. Об этой головоломке также нередко говорят, что ее способны решить только два процента населения планеты. По всей вероятности, это заявление не соответствует действительности, но приманка замечательная.


Ответ

1. На улице пять домов.

2. Шотландец живет в красном доме.

3. У грека есть собака.

4. В зеленом доме пьют кофе.

5. Боливиец пьет чай.

6. Зеленый дом находится справа от дома цвета слоновой кости.

7. Тот, кто носит броги (грубые рабочие башмаки), держит улиток.

8. В желтом доме носят криперы (обувь с шипами на подошве).

9. В среднем доме пьют молоко.

10. Датчанин живет в первом доме.

11. Сосед того, кто носит сандалии, живет в доме по соседству с человеком, который держит лису.

12. Криперы носят в доме по соседству с тем, в котором держат лошадь.

12. Криперы носят в доме по соседству с тем, в котором держат лошадь.

13. Тот, кто носит шлепанцы, пьет апельсиновый сок.

14. Японец носит вьетнамки.

15. Датчанин живет по соседству с синим домом.


Кто пьет воду? Кто держит зебру?

Для уточнения условий задачи следует отметить, что все пять домов окрашены в разные цвета, а их обитатели имеют разную национальную принадлежность, держат разных домашних животных, пьют разные напитки и носят разную обувь. В версии головоломки, опубликованной в Life International, соседи курили американские сигареты разных марок. Я заменил их обувью, поскольку Эйнштейн был известен тем, что никогда не носил носков.

Реакция читателей Life была ошеломляющей. «Как только журнал поступил в продажу, ответы лавиной хлынули в отдел корреспонденции,  писал редактор журнала в следующем номере, в котором головоломка была напечатана прямо на обложке.  Их присылали юристы, дипломаты, врачи, инженеры, учителя, физики, математики, полковники, рядовые, священники, домохозяйки, а также некоторые поразительно образованные и логически мыслящие дети. Все корреспонденты жили за тысячу километров друг от друга  в провинциальных деревнях Англии, на Фарерских островах, в Ливийской пустыне, в Новой Зеландии, но у них был один талант  чрезвычайно высокий уровень интеллекта». Читатель, не подведи меня!


Если вам понравилась эта головоломка, вы по достоинству оцените гениальность следующей задачи, ломающей мозг. Придуманная молодым логиком из Кембриджа Максом Ньюманом, она была опубликована в колонке Хьюберта Филлипса в журнале New Statesman в 1933 году. Филлипс подписывал свою колонку псевдонимом Калибан, по имени порабощенного дикаря из пьесы Шекспира «Буря». Многие задачи Калибана были созданы в сотрудничестве с профессиональными математиками, и представленная ниже, пожалуй, самая блестящая.

Эта головоломка  творение гения. На первый взгляд, информации, по условиям задачи, до смешного мало, но, разумеется, в ней есть все необходимое для поиска решения. Журнал Mathematical Gazette назвал головоломку Ньюмана «настоящей жемчужиной» и уверял: «Чтобы в нее поверить, нужно ее решить». Мне решение далось нелегко, но это не помешало восхищаться его исключительной элегантностью.


Ответ

Завещание Калибана содержало следующий пункт: «Я завещаю по десять своих книг Лоу, Y.Y.[8] и Критику. Пусть они выбирают их в таком порядке.


1. Те, кто видел меня в зеленом галстуке, не могут выбирать раньше Лоу.

2. Если Y.Y. не был в Оксфорде в 1920 году, то выбирающий первым никогда не давал мне взаймы зонтик.

3. Если вторым выбирает Y.Y. или Критик, то Критик выбирает раньше того, кто влюбился первым».


К сожалению, Лоу, Y.Y. и Критику не удалось вспомнить ни одного из названных фактов, но поверенный обратил внимание на то, что если головоломка составлена правильно (то есть в ней нет утверждений, не имеющих отношения к решению), то можно логически вывести очередность выбора.

В каком порядке должны выбирать книги Лоу, Y.Y. и Критик?

Лоу, Y.Y. и Критик были коллегами Филлипса в New Statesman, но этот факт вряд ли поможет в решении задачи. Важно, что каждое ее условие имеет отношение к решению головоломки, поэтому вы должны исключить все условия, в которых любая часть любого утверждения избыточна. Впоследствии выдающиеся способности Макса Ньюмана к постановке задач нашли более серьезное применение в области их решения. В годы Второй мировой войны он возглавил отделение дешифровки (Newmanry) в Блетчли-парке, что привело к созданию «Колосса»  первой в мире программируемой электронной вычислительной машины. Ньюман был коллегой и близким другом Алана Тьюринга, отца теоретической компьютерной науки. Именно лекции Ньюмана в Кембридже вдохновили Алана Тьюринга на написание знаковой статьи «О вычислимых числах» (On Computable Numbers). После войны Ньюман организовал в Манчестере вычислительную лабораторию Лондонского королевского общества и уговорил Тьюринга присоединиться к нему.


Хьюберт Филлипс  самый ранний источник следующей удивительной головоломки о трехсторонней дуэли (или труэли), перефразированной мной в знак уважения к фильму, который заканчивается дуэлью с участием трех героев[9].

Хороший, Плохой и Злой вот-вот начнут перестрелку. Каждый из героев находится на одной из трех вершин треугольника. По правилам, Злой будет стрелять первым, за ним Плохой, а затем Хороший, после чего очередь снова перейдет к Злому, и перестрелка продолжится в том же порядке до тех пор, пока в живых останется только кто-то один. Злой стреляет хуже всех и может попасть в цель лишь один раз из трех. Плохой стреляет лучше, попадая в цель два раза из трех. Хороший стреляет лучше всех и никогда не промахивается.

Вы можете исходить из того, что каждый участник придерживается лучшей стратегии и ни в одного из них не попадет пуля, предназначенная для другого.

В кого должен стрелять Злой, чтобы максимально повысить свои шансы на выживание?

Ниже представлены еще три логические задачи подобного типа, придуманного Хьюбертом Филлипсом, хотя составил их не он. Они читаются как одноактные пьесы и достаточно сложны, чтобы процесс поиска их решения приносил истинное удовольствие.


Ответ

Перед вами три ящика: на первом табличка с надписью «яблоки», на втором  «апельсины» и на третьем  «яблоки и апельсины». В одном ящике находятся яблоки, во втором  апельсины, в третьем  яблоки и апельсины, однако таблички не соответствуют содержимому ящиков. Задача  правильно развесить таблички. Вы не можете увидеть (или определить по запаху), что находится в каждом ящике, но вам разрешается достать один фрукт из любого ящика.

Какой ящик вы выберете и каким образом, увидев фрукт, правильно определите содержимое всех ящиков?

Ответ

Сид Соль, Фил Перец и Риз Приправа обедают вместе. Находящийся среди них мужчина обращает внимание на то, что один из них взял соль, другой перец, а третий приправу.

Человек, взявший соль, говорит:

 Пикантность нашей ситуации придает то, что ни один из нас не держит в руках специю, соответствующую его фамилии!

 Передай приправу!  говорит Риз.

Если у этого мужчины нет приправы, то что держит Фил?

Ответ

[10]

Адам и Ева играют в «Камень, ножницы, бумага» десять раз. Известно, что:


 Адам выбирает камень три раза, ножницы шесть раз и бумагу один раз.

 Ева два раза выбирает камень, четыре раза ножницы и четыре раза бумагу.

 Ничьих не бывает.

 В каком порядке Адам и Ева делают выбор, неизвестно.


Кто победил и с каким счетом?

Когда в 1964 году Хьюберт Филлипс умер, в некрологе о нем в Times говорилось: «Можно сказать, что он создал больше развлечений на случай дождливого дня, чем любой другой писатель его времени». Помимо головоломок Филлипс составил тысячи кроссвордов, а также много писал о бридже, поскольку был профессиональным игроком и организатором турниров по бриджу в Англии. Кроме того, Филлипс написал множество юмористических стихотворений, более двухсот детективных романов и научный труд о футбольных тотализаторах: он также был популярным ведущим передачи Round Britain Quiz на BBC. Несмотря на то что Филлипс занимался разнообразной деятельностью, его вклад в культуру головоломок был очень весомым.

Филлипс первым опубликовал задачу, каждый персонаж которой знает то, чего не знает другой, но что скоро становится известным, и это, как мы увидим, делает его «дедушкой» задачи о дне рождения Шерил, которая обошла весь мир в 2015 году.

Назад Дальше