В самой ранней загадке такого типа идет речь об испачканных лицах. В ее простейшей версии два участника.
Ответ
Альберта и Бернадет дурачились в саду, а затем вошли в дом. Сестры видят лица друг друга, но не свое лицо. Отец, который видит обеих девочек, говорит им, что по меньшей мере у одной из них лицо в грязи, и просит дочек стать спиной к стене.
Пожалуйста, пусть та из вас, у которой грязное лицо, сделает шаг вперед, говорит он.
Ничего не происходит.
Пожалуйста, пусть та из вас, у которой грязное лицо, сделает шаг вперед, повторяет он.
Что произойдет и почему?
При решении подобных головоломок необходимо исходить из того, что все действующие лица, даже непослушные дети, поступают честно и обладают аналитическими способностями на уровне специалиста по логике.
Что произойдет и почему?
При решении подобных головоломок необходимо исходить из того, что все действующие лица, даже непослушные дети, поступают честно и обладают аналитическими способностями на уровне специалиста по логике.
Я расскажу вам, как решить эту головоломку. Мы знаем, что хотя бы у одной девочки грязное лицо, поэтому существует три возможных варианта: оно грязное либо у Альберты, либо у Бернадет, либо у обеих девочек одновременно.
Вариант 1. У Альберты лицо в грязи, у Бернадет чистое.
(Обратите внимание: это известно нам с вами, но не сестрам. Девочки знают только то, что могут видеть, и, соответственно, сделать из этого выводы.)
Давайте станем на место Альберты. Допустим, она смотрит на Бернадет и видит чистое лицо сестры. Зная, что у одной из них точно лицо в грязи, Альберта приходит к выводу, что испачкалась она. Затем отец Альберты просит выйти вперед ту дочь, у которой грязное лицо, но девочка не делает этого. Итак, мы можем сделать вывод, что этот вариант не верен, поскольку при условии, что Альберта ведет себя честно, она бы сделала шаг вперед.
Вариант 2. У Бернадет лицо в грязи, у Альберты чистое.
Если поменять имена местами, аналогичная логическая аргументация исключает и этот сценарий.
Вариант 3. У обеих девочек лица в грязи.
Снова начнем с Альберты. Она смотрит на Бернадет и видит, что у сестры грязное лицо. Ей известно, что одна из них точно испачкалась. Альберта не может сделать никаких выводов о своем лице, так как в обоих случаях (грязное у нее лицо или чистое) утверждение, что «по меньшей мере у одной из сестер лицо в грязи», является истинным. И когда отец просит ту из девочек, у которой грязное лицо, выйти вперед, Альберта не делает этого. Здесь важно понимать, что она не выходит вперед потому, что не знает, есть у нее на лице грязь или нет, а не потому, что считает свое лицо чистым.
Аналогичным образом Бернадет видит грязное лицо сестры и приходит к выводу, что не может точно знать, что с ее собственным лицом. Когда отец просит выйти вперед ту дочь, у которой грязное лицо, Бернадет, соответственно, не делает этого.
Мы можем быть уверены в том, что этот вариант правильный, поскольку ни одна из девочек не делает ни шагу, когда отец первый раз просит их выйти вперед. Что же произойдет дальше?
Лицо Альберты либо грязное, либо нет. Однако она может исключить вероятность того, что у нее чистое лицо, потому что, если бы это было так, Бернадет, которая видит лицо сестры, пришла бы к выводу, что это у нее самой грязное лицо, и сделала бы шаг вперед еще тогда, когда отец попросил об этом в первый раз. Таким образом, Альберта приходит к выводу, что и ее лицо испачкано. По той же причине Бернадет приходит к аналогичному выводу насчет себя, и, когда отец второй раз повторяет свою просьбу, обе делают шаг.
В общем, происходит следующее: обе сестры видят испачканные лица друг друга, но не могут получить сведений о чистоте собственных лиц логическим путем. Однако понимание того, что другая сестра не может определить состояние своего лица, дает им новую информацию, позволяющую сделать вывод, что у обеих лица грязные. Отлично!
Хьюберт Филлипс опубликовал первую задачу об испачканных лицах в 1932 году, хотя подобные логические головоломки восходят к давним временам. Во французской салонной игре «Ущипнуть, не засмеявшись», датированной XVI веком, тот игрок, чьи пальцы в саже, оставляет пятна на лицах других участников. Смысл в том, чтобы засмеяться последним. Эта салонная игра упоминается в шедевре сатирической литературы французского писателя Франсуа Рабле «Гаргантюа и Пантагрюэль». В одном из ранних переводов этой книги на немецкий язык в XIX столетии описывается новый поворот игры: каждый участник должен ущипнуть соседа справа за подбородок. Два игрока натирают пальцы обожженным куском извести, следовательно, у двоих на лицах останутся ее следы. «Эти [игроки] выставляют себя на посмешище, отмечает переводчик, поскольку оба считают, что все смеются над кем-то другим».
Вскоре после того, как Филлипс опубликовал задачу об испачканных лицах, в книгах головоломок начали появляться ее различные варианты, которые привлекли внимание ученых, включая и американского космолога русского происхождения Георгия Антоновича Гамова (Джордж Гамов), одного из первых сторонников теории Большого взрыва, объясняющей происхождение Вселенной, а также автора замечательных научно-популярных книг. К их числу относится опубликованная в 1947 году One Two Three Infinity («Раз, два, три бесконечность») одна из моих любимых. Особенно примечательна она тем, что Гамов сам ее иллюстрировал.
В 1956 году Гамов консультировал авиастроительную компанию Convair, где в то время работал Марвин Стерн. Гамов и Стерн, работавшие на разных этажах, обратили внимание, что каждый раз, когда они отправляются в кабинеты друг друга, лифт почти всегда движется не в том направлении. Обсуждая математику, лежавшую в основе этой явно парадоксальной ситуации, они подружились и в результате решили совместно написать книгу Puzzle-Math[11], в которой есть следующая задача о трех лицах, испачканных сажей.
Три пассажира поезда спокойно занимаются своими делами, как вдруг влетевший в окно дым от проходящего мимо локомотива покрывает их лица копотью. Один из пассажиров, мисс Аткинсон, отрывает глаза от книги, которую читает, и смеется. Другие пассажиры тоже смеются. Мисс Аткинсон, как и ее соседи по купе, считает, что у нее-то лицо чистое, а два других пассажира смеются потому, что видят испачканные сажей лица друг друга. Однако вскоре мисс Аткинсон озаряет, она достает носовой платок и вытирает лицо.
Мы можем исходить из того, что все трое ведут себя логично, но мисс Аткинсон более проницательна. Как она поняла, что ее лицо тоже испачкано сажей?
Книга «Занимательные задачи» Гамова не так популярна, как его другие книги, тем не менее в ней приводится одна из самых великолепных из когда-либо созданных логических задач. (Гамов говорил, что о ней ему рассказал великий советский астрофизик Виктор Амбарцумян.) Я немного перефразировал ее, заменив жен на мужей. Это трудная головоломка, но если вы следили за логикой двух предыдущих задач, то у вас есть все необходимое для ее решения. Даже если не справитесь самостоятельно, вы сможете проанализировать готовое решение и, не сомневаюсь, будете им восхищены.
Ответ
В провинциальном городке 40 мужей изменяют своим женам. Каждая женщина знает, что у всех мужчин (кроме ее мужа) роман на стороне. Другими словами, каждая жена думает, что ее муж хранит ей верность, зная при этом, что остальные 39 мужчин изменяют женам.
Узнав о моральной деградации жителей города, столичный правитель издал указ, требующий наказать мужей за безнравственность. В указе сказано, что на следующий день после того, как женщина узнает о неверности мужа, она должна убить его в полночь на городской площади.
Что происходило после того, как правитель заявил: «Я знаю, что в вашем городе есть хотя бы один неверный муж, поэтому призываю вас принять меры»?
Сначала головоломка кажется неправдоподобной, ведь жены-то уже знают о 39 неверных мужьях. Разве слова правителя о том, что «хотя бы» один муж изменяет своей жене, что-то меняют? Вне всякого сомнения, многое!
В следующей головоломке задействованы три человека, которые делают дедуктивные выводы на основании того, что знают сами и что известно другим.
Ответ
У Альгернона, Бальтазара и Каратака есть коробка с тремя красными и двумя зелеными шляпами. Каждый мужчина достает с закрытыми глазами шляпу из коробки и надевает ее. Закрыв коробку, они открывают глаза, и каждый из них видит, какого цвета шляпа на голове у товарищей. Но ни один не знает цвета своей шляпы и того, какие шляпы остались в коробке.
Альгернон: Я не знаю цвета своей шляпы.
Бальтазар: Я не знаю цвета своей шляпы.
Увидев у двух друзей на голове красные шляпы, Каратак говорит: «А я знаю цвет своей шляпы».
Какого цвета его шляпа?
Задача «Коробка со шляпами» появилась не позднее 1940 года, хотя в то время она звучала по-другому: речь в ней шла о навершиях на головных уборах у китайских мандаринов. И самое важное по условиям задачи ни один мандарин не заявлял о своем неведении вслух. Нужно было вывести дедуктивным методом, чего не знают мандарины, судя по их молчанию.
Комедийный диалог, в ходе которого каждый персонаж задачи заявляет, что он чего-то не знает, забавное усовершенствование, добавленное в 1960-х годах. Этот остроумный прием яснее показывает, кто что знает, и усиливает эффект пантомимы.
Представленная ниже головоломка взята из книги Джона Литлвуда Mathematicians Miscellany[12], опубликованной в 1953 году. Литлвуд был одним из трех известных британских математиков первой половины XX столетия, к числу которых относились Харди, Литлвуд и, как гласила шутка, «Харди-Литлвуд» (что подчеркивает невероятно длительное плодотворное сотрудничество между Джоном Литлвудом и Готфридом Харди). Во время Первой мировой войны Литлвуд работал на армию, улучшая формулы расчета направления, продолжительности полета и траектории движения снарядов. Военный труд Литлвуда оценили очень высоко, наделив ученого особой привилегией разрешением носить зонт, будучи одетым в военную форму.
Представленная ниже головоломка взята из книги Джона Литлвуда Mathematicians Miscellany[12], опубликованной в 1953 году. Литлвуд был одним из трех известных британских математиков первой половины XX столетия, к числу которых относились Харди, Литлвуд и, как гласила шутка, «Харди-Литлвуд» (что подчеркивает невероятно длительное плодотворное сотрудничество между Джоном Литлвудом и Готфридом Харди). Во время Первой мировой войны Литлвуд работал на армию, улучшая формулы расчета направления, продолжительности полета и траектории движения снарядов. Военный труд Литлвуда оценили очень высоко, наделив ученого особой привилегией разрешением носить зонт, будучи одетым в военную форму.