Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - Алекс Беллос 6 стр.


Но вернемся к головоломке, основанной на оригинальной задаче Литлвуда. Теперь она включает ставший нормой диалог между персонажами, что усложняет дело, так как вам придется запоминать различные варианты по мере накопления общих знаний. Пошаговое исключение неправильных ответов в ходе решения задачи приносит настоящее удовольствие. Разгадка головоломок позволяет испытать такую ясность мысли, которая одновременно и возбуждает, и терзает, а это само по себе весело.


Ответ

Втайне написав два числа на листе бумаги, Зебеди сказал Ксанфу и Иветт, что это целые числа, то есть они взяты из ряда чисел, начинающегося с 1, 2, 3, 4, 5 Он также сообщил, что это последовательные числа, иными словами, два числа, следующие друг за другом (такие числа образуют пары: 1 и 2, или 2 и 3, или 3 и 4 и т. д.). Затем Зебеди шепотом назвал одно число Ксанфу, а другое  Иветт, после чего произошел такой диалог:


Ксанф: Мне неизвестно твое число.

Иветт: Мне неизвестно твое число.

Ксанф: Теперь я знаю твое число.

Иветт: Теперь и я знаю твое число.


Можете ли вы определить хотя бы одно из чисел Зебеди?

Зебеди мог бы не шептать число на ухо Ксанфу, а нарисовать его на лице Иветт сажей или написать на ее шляпе. Или сделать то же самое, поменяв приятелей местами. Важно, что Ксанфу известно то, чего не знает Иветт, и наоборот.

Тот же принцип лежит в основе следующей задачи, которую я разместил в 2015 году в своем блоге в Guardian после того, как нашел ее на одном сингапурском сайте. Головоломка привлекла мое внимание, потому что, согласно описанию, предназначалась для учеников начальной школы, а этот факт подкреплял стереотипное представление о поразительно высоких стандартах математического образования в странах Азии. Если в Сингапуре от учеников начальной школы ожидали решения подобных задач, то неудивительно, что их считают лучшими юными математиками в мире.


Ответ

Альберт и Бернард только что познакомились с Шерил и хотят знать, когда у девочки день рождения. Шерил дала им список из десяти возможных дат.


15 мая 16 мая 19 мая

17 июня 18 июня

14 июля 16 июля

14 августа 15 августа 17 августа


После этого она назвала Альберту месяц, а Бернарду число своего дня рождения. Далее между Альбертом и Бернардом произошел такой диалог.

Альберт: Я не знаю, когда у Шерил день рождения, но знаю, что Бернард тоже не знает.

Бернард: Сначала я не знал, когда у Шерил день рождения, но теперь знаю.

Альберт: Теперь я тоже знаю, когда у Шерил день рождения.


Так когда день рождения у Шерил?

За несколько часов размещенная в моем блоге задача «День рождения Шерил» стала самой просматриваемой публикацией на сайте Guardian. По всей вероятности, этому способствовал дерзкий заголовок-приманка «Умнее ли вы десятилетнего ребенка?».

Однако вскоре выяснилось, что задача взята из заданий региональной олимпиады по математике, рассчитанной на 40 процентов сильнейших учеников в возрасте 15 лет, причем она была предпоследним из двадцати пяти заданий, представленных в порядке возрастания сложности. Следовательно, решить ее могли только самые сильные ученики. Я изменил заголовок с тем, чтобы он правильно отражал уровень сложности головоломки, но интерес к ней все равно не ослабел. Напротив, задача о дне рождения Шерил распространялась по сети словно пандемия, став в последующие дни историей номер один на многих новостных сайтах, в том числе BBC и New York Times. За неделю она собрала более пяти миллионов просмотров на одном только сайте Guardian. Когда в газете определили самые просматриваемые публикации года, упомянутый пост в моем блоге, где я представил задачу, занял девятое место, а пост с решением  шестое. Сомневаюсь, что когда-либо математическая задача так быстро распространялась среди стольких людей по всему миру.

Я связался с сингапурским преподавателем математики по имени Джозеф Йоу Бун Вуй, который составил эту задачу. Просматривая ленту в Facebook, он увидел фотографию экзаменационного билета с этой задачей и понял, что она стремительно распространяется по миру. «Я уже где-то видел эту задачу!  воскликнул он.  Постойте, ведь это же я ее составил!»

Доктор Йоу из Национального института образования  ведущий автор учебников по математике, по которым учится более половины учеников средней школы в Сингапуре. Он сказал мне, что идея головоломки пришла к нему от кого-то другого. Доктор Йоу прочитал ее похожий вариант в сети и решил его адаптировать, дав персонажам новые имена, сократив диалог и изменив даты, ради шутки сделав ответом собственный день рождения. Ни мне, ни ему не удалось найти первого автора задачи. Мы смогли отследить ее истоки только до публикации 2006 года на страницах математического форума Ask Dr. Math, который поддерживает Университет Дрексела. Задачу вместе с просьбой помочь ее решить разместил на сайте некто по имени Эдди.

Из всего этого вытекает следующий вывод: создание интересной головоломки, как правило, коллективное творчество. Как басни и анекдоты, головоломки меняются и развиваются. С каждой новой формулировкой в них привносится что-то новое, причем лучшие варианты могут существовать в течение десятилетий, столетий и даже тысячелетий.

Однако Джозеф Йоу придумал продолжение этой головоломки.


Ответ

Альберт, Бернард и Шерил подружились с Дениз и хотят знать день ее рождения. Дениз дала им список из двадцати возможных дат.

Затем Дениз назвала Альберту месяц, Бернарду число, а Шерил год своего рождения, после чего произошел такой диалог:


Альберт: Я не знаю, когда у Дениз день рождения, но знаю, что Бернард не знает.

Бернард: Я все еще не знаю, когда у Дениз день рождения, но знаю, что Шерил тоже не знает.

Шерил: Я все еще не знаю, когда у Дениз день рождения, но знаю, что Альберт пока не знает.

Альберт: Теперь я знаю, когда у Дениз день рождения.

Бернард: Теперь я тоже знаю.

Шерил: И я.


Когда же день рождения у Дениз?

Еще один важный предшественник задач о Шерил  «Невозможная головоломка» голландского математика Ганса Фройденталя, опубликованная в 1969 году; в нее впервые был добавлен диалог «я не знаю  теперь я знаю» из предыдущих задач. В полном соответствии с названием эту головоломку практически невозможно решить с помощью ручки и бумаги, поэтому я не включил ее в эту книгу. (Однако если вы твердо намерены проверить свои силы, поищите ее в интернете.) «Невозможная головоломка» также относится к другому типу логических задач, который восходит как минимум к первой половине прошлого века. В них необходимо дедуктивным методом вывести ряд чисел, зная их сумму и произведение. Как правило, в таких задачах речь идет о возрасте, а героями чаще всего бывают священнослужители.


Ответ

Викарий спросил церковного служителя: «Сколько лет вашим троим детям?»

Служитель ответил: «Сложив их возраст, вы получите номер на моей двери. Умножив их возраст, получите число 36».

Викарий ушел, но, вернувшись через какое-то время, сказал, что не может решить задачу.

Служитель сказал викарию: «Ваш сын старше любого из моих детей»  и прибавил, что теперь викарий сможет решить головоломку.

Определите возраст детей церковного служителя.

Эта задача приводит нас к предпоследней головоломке в этой главе, придуманной британским математиком Джоном Конвеем, почетным профессором Принстонского университета. Последний раз я встретился с ним на междисциплинарной конференции по математике, головоломкам и фокусам. Конвей заявил тремстам участникам, что такие люди, как он, нуждаются в подбадривающем приветствии, и предложил использовать следующий жест: указывая на себя, как можно более слабым голосом произнести слово «нерд»[13]. Затем он попросил всех присутствующих воспроизвести приветствие нердов. Игривый характер Конвея оказал большое влияние на всю его академическую карьеру: он изобрел много игр и головоломок, самая знаменитая  игра «Жизнь». В ее основе лежит математическая модель эволюции, которую ученые вроде Стивена Хокинга приводят в качестве иллюстрации того, как простые правила могут породить сложное поведение.

Представленная ниже задача Конвея  настоящий шедевр. Она пародирует головоломки, в которых разные факты известны разным людям, и является блестящим примером подобных задач. Как и все лучшие логические задачи со времен Алкуина, эта представляет собой забавную историю, в которой на первый взгляд слишком мало данных для поиска решения.


Ответ

Вчера вечером, сидя в автобусе позади двух математиков, я подслушал их разговор.


А: У меня несколько детей, возраст которых представляет собой натуральные числа. Сумма этих значений равна номеру автобуса, а произведение  моему возрасту.

Б: Как интересно! Возможно, если бы ты сказал мне свой возраст и количество детей, я мог бы определить возраст каждого из них?

А: Нет.

Б: Ага! НАКОНЕЦ-ТО я знаю, сколько тебе лет!


Какой номер автобуса?

Если математик говорит «нет», это не свидетельствует о его ворчливости или пренебрежительности. Просто он имеет в виду, что, если сообщит свой возраст или количество детей, у собеседника все равно будет недостаточно сведений, чтобы определить возраст каждого ребенка.

Чтобы упростить поиск решения, скажу, что у математика больше одного ребенка, но только один малыш в возрасте одного года. И есть лишь один вероятный номер автобуса.

Вперед, за разгадкой!


В заключение, чтобы подготовить вас к решению геометрических задач в следующей главе, позвольте предложить визуальную логическую головоломку.


Ответ

На рисунке на четырех карточках с одной стороны изображена буква, а с другой цифра.

Какие карточки нужно перевернуть, чтобы проверить истинность следующего утверждения: «На другой стороне всех карточек с гласной изображено нечетное число»?

Ответ

10 увлекательных головоломок. Умеете ли вы играть в слова?

[14]

1. Добавьте либо в начало, либо в конец приведенной ниже последовательности букв одну букву так, чтобы получилось слово. Составьте не менее трех таких слов.

ОКО

Ответ


2. Составьте словосочетание из набора букв:

Л О С О Н Д О О В

Ответ


3. Назовите несколько слов, которые начинаются с четырех согласных. Затем найдите слово, которое оканчивается четырьмя согласными.

Ответ


4. Иван Иванов работает в компании АСОНД. Вот его визитка:

Видите ли вы здесь закономерность?

Ответ


5. Какое слово начинается с трех букв «г» и заканчивается тремя буквами «я»?

Ответ


6. (Детская задачка-анаграмма типа «Грамматика + математика = отгадай слово». Чтобы составить анаграмму, нужно переставить буквы в слове и получить новое.) Выполните следующие задания:

Назад Дальше