Воды мира. Как были разгаданы тайны океанов, атмосферы, ледников и климата нашей планеты - Сара Драй 11 стр.


КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

Несмотря на усовершенствование установки, первые эксперименты с газами не дали никаких результатов. Еще одной серьезной проблемой оказалось создание постоянного источника тепла. Несколько недель весны 1859 г. прошли в безуспешных попытках получить результаты. Порой Тиндаль впадал в отчаяние: «Весь этот период был непрекращающейся борьбой с экспериментальными трудностями»,  писал он. Как разительно этот опыт отличался от тех моментов мгновенного прозрения, которые он переживал в горах, когда понимание скрытой истины озаряло его разум внезапно, словно выглянувшее из-за туч солнце![51] И вот 18 мая 1859 г., после нескольких месяцев упорного труда, наконец-то произошел прорыв: «Экспериментировал весь день; предмет изучения полностью в моих руках!» На следующий день Тиндаль написал: «Эксперименты, главным образом с парáми и угольным газом, превосходны  а с эфирными парами и того лучше»[52].

В июне 1859 г. Тиндаль, казалось, внезапно прервал свои экспериментальные изыскания и отправился в Альпы, чтобы продолжить исследование ледников. Однако это не было спонтанным решением. Не занимая постоянного преподавательского места в каком-либо учебном заведении, он тем не менее придерживался академического графика  с осени до конца весны читал лекции и работал в лаборатории, а летом уезжал в Альпы. Только в сентябре 1860 г. Тиндаль вернулся к своей экспериментальной установке и снова занялся ее отладкой, пытаясь найти новый, более совершенный источник тепла. На протяжении следующих семи недель он безостановочно экспериментировал, проводя в лаборатории по восемь  десять часов в день. Среди газов, с которыми он работал, были серный эфир, озон, этилен, дисульфид углерода, йодистый этил, йодистый метил и десятки других веществ. К концу октября длинный список, который Тиндаль обозначил как первоначальное направление своих исследований, был исчерпан. Постепенно он научился очищать воздух в помещении, представлявший собой смесь разнообразных веществ, до такой степени, что прибор мог регистрировать самые слабые изменения их состояния. Но эксперименты приносили сплошь разочарования: вещества, которые он изучал, оказались удручающе плохими поглотителями тепла, исходившего от емкости с кипящей водой. Да, эффекты разнились, и Тиндаль напряженно работал, пытаясь уловить скрытую мелодию в череде варьирующихся цифр[53]. Но результаты измерений его не устраивали, и он в итоге отверг все свои выводы. Это было временем испытаний, «продолжающейся борьбы с трудностями, сопряженными с предметом изучения и несовершенствами обстановки, в коей проводилось исследование»[54].

Все это время Тиндаль продолжал работать над созданием источника стабильного тепла. И вот в ноябре 1860 г. ему наконец-то улыбнулась удача. Образец воздуха из лаборатории, очищенный от влаги и углекислого газа, отклонял стрелку гальванометра примерно на 1°. Такое же отклонение давали кислород, полученный из хлората калия и пероксида марганца, азот, водород, полученный из цинка и серной кислоты, и водород, полученный путем электролиза воды. Особые усилия Тиндаль приложил к тому, чтобы получить максимально чистый образец кислорода: для этого добытый путем электролиза кислород был последовательно пропущен через восемь сосудов с концентрированным раствором йодида калия, который полностью очистил его от озона. Но и чистый кислород отклонил стрелку гальванометра всего на 1°. Тогда Тиндаль решил нагреть кислород, не пропущенный через йодистый калий, то есть загрязненный озоном,  и стрелка прыгнула на целых 4°. Это означало, что озон был в три раза более сильным поглотителем теплового излучения, чем кислород.

Двадцатого ноября произошло нечто еще более удивительное. Сначала Тиндаль измерил поглощение тепла воздухом, очищенным от влаги и углекислого газа. Количество абсорбированного излучения оказалось незначительным, что было неудивительно, учитывая результаты по другим веществам. Но затем Тиндаль решил нагреть неочищенный образец воздуха, взятый прямо из лаборатории,  и стрелка гальванометра отклонилась на невероятные 15°! Тиндаль вычел влияние углекислого газа, но результат все равно был поразительным: невидимая влага, присутствовавшая в неосушенном воздухе, поглощала в 13 раз больше тепла, чем чистый кислород.

Потратив на эксперименты 14 недель, Тиндаль наконец-то был готов сообщить о результатах в своей Бейкеровской лекции[55] 1861 г. Новость о сделанном им крупнейшем открытии ученый приберег напоследок. Он начал лекцию с описания незначительных поглощающих свойств таких веществ, как хлороформ и спирт, и лишь затем перешел к теме, представлявшей «значительный интерес», а именно к взаимодействию атмосферы с тем, что он назвал солнечным и земным теплом. Им был обнаружен любопытный феномен: воздух, очищенный от влаги и других составляющих, поглощал очень мало тепла, тогда как воздух, взятый непосредственно в лаборатории, поглощал его в 15 раз больше.

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

Двадцатого ноября произошло нечто еще более удивительное. Сначала Тиндаль измерил поглощение тепла воздухом, очищенным от влаги и углекислого газа. Количество абсорбированного излучения оказалось незначительным, что было неудивительно, учитывая результаты по другим веществам. Но затем Тиндаль решил нагреть неочищенный образец воздуха, взятый прямо из лаборатории,  и стрелка гальванометра отклонилась на невероятные 15°! Тиндаль вычел влияние углекислого газа, но результат все равно был поразительным: невидимая влага, присутствовавшая в неосушенном воздухе, поглощала в 13 раз больше тепла, чем чистый кислород.

Потратив на эксперименты 14 недель, Тиндаль наконец-то был готов сообщить о результатах в своей Бейкеровской лекции[55] 1861 г. Новость о сделанном им крупнейшем открытии ученый приберег напоследок. Он начал лекцию с описания незначительных поглощающих свойств таких веществ, как хлороформ и спирт, и лишь затем перешел к теме, представлявшей «значительный интерес», а именно к взаимодействию атмосферы с тем, что он назвал солнечным и земным теплом. Им был обнаружен любопытный феномен: воздух, очищенный от влаги и других составляющих, поглощал очень мало тепла, тогда как воздух, взятый непосредственно в лаборатории, поглощал его в 15 раз больше.

Вывод был следующим: даже очень незначительные изменения в содержании таких основных газов, как водяные пары, углекислый газ и пары углеводородов, могли значительно менять количество тепла, поглощаемого атмосферой, приводя таким образом к изменению температуры на планете. Этот механизм потенциально мог объяснять как глобальные похолодания, так и потепления, о которых свидетельствовали ископаемые останки. Он также объяснял, почему на вершинах гор, хотя те находятся ближе к солнцу, так холодно и почему в полдень солнце греет намного жарче, чем к вечеру. Все дело было в двойственной природе водяного пара. Производя, по выражению Тиндаля, «останавливающее воздействие» на тепло, исходящее от остывающей земли, он в то же время был полностью проницаем для световых лучей. Это и играло решающую роль. Солнечный свет легко проходил через водяной пар и поглощался землей, которая затем излучала тепло обратно, как это делает любой нагретый на солнце камень. Это тепло поглощалось содержащимся в атмосфере водяным паром, действовавшим подобно огромному окутывающему Землю одеялу и удерживавшим тепло, которое в противном случае улетучилось бы в космическое пространство. Тиндаль предположил, что именно различия в содержании водяного пара в атмосфере могут объяснять многие, если не все, изменения климата, зафиксированные в окаменелостях и геологических слоях. Больше не нужно было теоретизировать о возможных изменениях в плотности или высоте атмосферы или о поднятии целых континентов, чтобы объяснить колебания температуры на планете: «небольшого изменения» количества водяного пара в атмосфере было достаточно для того, чтобы произвести «все перемены земного климата, обнаруживаемые исследованиями геологов»[56]. Значение этого открытия было колоссально. Разумеется, эксперимент требовалось повторить в других местах, с другими образцами атмосферного воздуха, чтобы устранить любое возможное влияние присутствия пыли или иных частиц. Но «с чрезвычайно высокой степенью вероятности», заявлял Тиндаль, «поглощение тепла атмосферой происходит главным образом благодаря водяному пару, который содержится в воздухе»[57].

Кропотливые эксперименты Тиндаля в подвальной лаборатории дали результаты, которые могли объяснить самые значительные с точки зрения времени и пространства изменения, происходившие на Земле. Поглощение тепла водяным паром в атмосфере влияет на климат на всей планете. Тиндаль не побоялся подчеркнуть это и в своей лекции, и в статье, в которой обнародовал результаты исследования. Его статья была зачитана вслух перед членами Королевского общества и выбрана в качестве Бейкеровской лекции года, что было особой честью.

Но Тиндаль недолго наслаждался успехом. Вскоре из Германии пришло письмо от немецкого физика Генриха Густава Магнуса, в котором тот заявлял о своем приоритете на открытие. К этому Тиндаль был готов: еще в мае 1859 г. он подал в Королевское общество предварительное уведомление об изучаемой им теме  как раз на такой случай. Хотя в уведомлении не содержалось описания предполагаемых результатов, этого было достаточно для того, чтобы «застолбить территорию». Однако проблема была куда серьезней: полученные Магнусом результаты исследования водяного пара были диаметрально противоположны тем, что получил Тиндаль. Магнус обнаружил, что сухой воздух поглощает больше (не намного, но все же больше) тепла, чем влажный[58].

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

В ответ Тиндаль вновь с головой погрузился в работу. Исследование уже потребовало от него «огромного и напряженнейшего труда», но это было ничто по сравнению с новым этапом работы, когда над ним довлело присутствие неожиданного конкурента. По словам самого Тиндаля, в своем рвении он доходил почти до религиозного «самоистязания».

В течение следующих четырех месяцев ученый каждый будний день трудился над тем, чтобы доказать неправоту Магнуса. К его облегчению, чем больше он совершенствовал свой метод и оборудование, тем более четко наблюдал обнаруженное им действие водяного пара. Разница между поглощающей способностью лишенного влаги и насыщенного ею воздуха становилась все более очевидной: если первый отклонял стрелку гальванометра всего на 1°, то второй смещал ее на 48° и даже на 50°.

Тиндаль разработал новые, более продвинутые способы осушения воздуха. Крупный кусок стекла измельчался в ступке до состояния пыли, которая кипятилась в азотной кислоте, промывалась дистиллированной водой и тщательно высушивалась. Затем эта стеклянная пыль смачивалась чистой серной кислотой и вводилась в U-образную трубку таким образом, чтобы предотвратить любой контакт между серной кислотой и закупоривавшей трубку пробкой, поскольку это могло бы ухудшить результаты осушки воздуха. Для очистки воздуха от углекислого газа использовались измельченный чистый белый мрамор и едкий калий. Таким образом, Тиндаль научился отдельно очищать воздух от влаги и углекислого газа. Он ежедневно готовил новые сушильные трубки, чтобы гарантировать их одинаковую эффективность. Он также усовершенствовал гальванометр, чтобы обеспечить еще более высокую точность измерений.

Назад Дальше