Космологические коаны. Путешествие в самое сердце физической реальности - Энтони Агирре 18 стр.


Теперь симулятор может подсчитать, какую долю результатов во всей этой серии симуляций составляет результат, при котором вверху оказывалась грань с определенной цифрой (1, 2 и т. д.). Эти доли переводятся в набор вероятностей, которые приписываются результатам бросков кости. Симулятор может выдать, например, такой результат: «Из 100000 смоделированных бросков кости с начальными условиями, взятыми из видеоклипа, в 3 % случаев выпала единица, в 96 % четверка, а на остальные цифры (2,3,5,6) пришелся 1 % случаев». Это чрезвычайно полезный прогноз, предсказывающий не только самый вероятный результат, но и то, насколько этот результат более вероятен, чем остальные. И это в точности то, что делается при составлении прогноза погоды: одни и те же расчеты проводятся множество раз, и доля тех результатов, которые показали, что в вашем районе завтра будет дождь, считается «вероятностью дождя».

Теперь вернемся к вероятности выпадения четверки, которую в отсутствие поддержки от симулятора с его мощной предсказательной способностью мы считаем равной 1/6. Но эта вероятность обусловлена другой причиной. Мы можем бросать кость много раз и записывать результаты. Но очевидной причины для получения в этом опыте вероятности выпадения четверки, равной 1/6, не видно. Однако именно такая вероятность получается вследствие симметрии кости: все грани кубика в смысле результатов бросков идентичны и отличаются только нарисованными на них цифрами. Точнее, между конкретной гранью кубика и физическими процессами, происходящими при бросании кубика, нет корреляции, и именно это мы называем «правильной» костью. Если одна сторона кости тяжелее, такая кость будет «неправильной» именно потому, что имеются корреляции между этой стороной кости и физическими процессами, происходящими при броске, и эти корреляции нарушают симметрию шести граней.

Симметрии, однако, не вполне достаточно для того, чтобы объяснить разницу между «вашей» вероятностью 1/6 и результатом симулятора 96 %. Если вы бросаете кость с высоты всего 1 см над столом, очень вероятно, что она упадет вверх той же стороной, которая смотрела вверх, когда кость была в руке в момент броска. Таким образом, для получения вероятности 1/6 требуется не только отсутствие корреляции между определенной стороной кубика и физическими процессами, управляющими его движением, но и достаточная сложность физического процесса, которая бы позволила разрушить любую корреляцию между результатом и видом информации, доступной вам как человеку, бросающему кость. Другими словами, при обычном броске кости имеется зависимость результата броска от начальных условий, но чтобы увидеть и использовать эту зависимость и получить в конечном итоге вероятность, отличную от 1/6, необходимо использовать всю мощь компьютерного симулятора и точные данные наблюдений.

Теперь подведем итоги. При бросании кости и вы, и компьютерный симулятор проходите через очень схожий прогнозирующий процесс. У вас есть модель процесса бросания кубика, а также доступ к некоторой информации о том конкретном броске, результат которого вы пытаетесь предсказать. Для вас эта информация довольно бесполезна, и вы прибегаете к оценке, основанной на симметрии, то есть на одинаковой вероятности выпадения грани с любой цифрой. А вот симулятор, который имеет доступ к полезной информации и возможность использования гораздо более сложной физической модели, может получить более точные прогнозы по распределению вероятностей. И поэтому, например, вы потеряете деньги при игре в кости с симулятором.

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

Легко себе представить, что симулятор может решить эту задачу лучше или хуже. Если используются лучшая видеокамера, более точная физическая модель стола и падения кости на него, более мощный компьютер и тому подобное, это может повысить точность определения вероятности выпадения, к примеру, четверки при броске правильной кости, доведя ее до значения 99,6 % вместо 96 %. Но столь же легко можно вообразить процесс броска, проходящий не так гладко. Например, если при броске кубик приземляется на ребро, вероятность кубика лечь на одну из прилегающих к этому ребру граней может оказаться примерно 50 на 50, так что потребуется очень много уточняющих расчетов перед тем, как та или иная вероятность начнет преобладать. Если же кость скатывается, к примеру, с длинного неровного холма, то даже симулятору будет трудно получить результат, отличный от стандартной вероятности 1/6, поскольку невозможно учесть все переменные и неопределенности. Но все-таки есть ощущение, что если приложить бездну усилий для улучшения модели и сбора более точных данных, то расчеты симулятора в конце концов приведут к единственному наиболее вероятному ответу на вопрос, что именно произойдет.

Тогда где предел? Возможно ли, что «оракул» со способностями, как у джинна, так хорошо справится со своей работой, что всегда с вероятностью 100 % предскажет определенный результат, оставляя для прочих результатов нулевую вероятность? В этом случае можно было бы сказать, что ему известны все обстоятельства, сопровождающие падение кости и приводящие к данному результату, и что у него имеется полный ответ на вопрос, почему именно эта грань кубика оказалась сверху.

Хотя задача кажется сложной, не очевидно, что ее невозможно решить в принципе. Даже если у вас нет необходимой информации и ноу-хау для того, чтобы предсказать, что случится, интуитивно кажется очевидным, что такая информация и ноу-хау существуют, поскольку Вселенная обладает этой информацией и устраивает так, что случается именно это событие, а не какое-то другое. Для этого должна быть причина, не так ли? Великие философы Просвещения Декарт, Спиноза и Лейбниц расходились во мнениях по многим вопросам, но в одном они были согласны: всегда есть причина, по которой происходит данное а не какое-то другое событие. Лейбниц писал об этом в своем труде «Монадология»: «Ни одно явление не может оказаться истинным или действительным, ни одно утверждение справедливым без достаточного основания, почему дело обстоит именно так, а не иначе»[42]. Сделать точный прогноз или найти идеальное объяснение может оказаться делом чрезвычайно сложным, но это всегда должно быть возможным.

Когда что-то случается, мы часто говорим, что оно произошло «без причины», но на самом деле мы редко имеем в виду буквально это. Да и впрямь: можете ли вы вообразить действие без причины? Некоторые величайшие умы пытались сделать это, но безуспешно, и тогда они решили, что это невозможно.

И тем не менее, согласно квантовой механике вероятно, наиболее фундаментальной теории физики,  такое возможно.

Когда ты собираешься бросить кость, ты задумываешься над тем, как такая простая вещь всего один бросок кости может, подобно колесу фортуны, круто изменить твою судьбу. Всего 6 цифр на гранях каждой кости, ничего между ними, никаких двусмысленностей. Отброшены стратегия, мастерство, история, и сложность мироустройства свелась к предельной простоте.

Ты бросаешь, и твоя судьба решена.

Вообразите, что кость состоит из одной элементарной частицы, а не из огромного числа частиц. В частности, попытайтесь вообразить, что кость имеет только два свойства: определенная цифра на верхней грани (i-б) и местоположение кости. Каждое из этих свойств соответствует вопросу, который можно задать кости, или, иными словами, виду измерения, которое можно произвести. Например, мы можем задать следующие вопросы:

Вопрос  1 (В1): Какая грань у тебя верхняя?

Вопрос  2 (В2): Где в точности ты находишься?

И кость может дать такие ответы:

Ответ  1 (О1): У меня на верхней грани шестерка.

Ответ  2 (О2): Мои координаты [широта, долгота, высота]: [27.1789335252, 78.0224962785, 1.232432].

Эта идея приводит нас к важному определению, имеющему далеко идущие последствия. Назовем квантовым состоянием физической системы полный набор определенных фактов, которые система, если ее спросить, сообщит о себе. Так, квантовое состояние нашего кубика будет определяться двумя ответами О1 и О2 и кратко записываться следующим образом: [О1; О2] = [6 ; 27.1789335252, 78.0224962785, 1.232432], где точка с запятой разделяет различные поставленные вопросы, на которые получены ответы.

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

Вопрос  1 (В1): Какая грань у тебя верхняя?

Вопрос  2 (В2): Где в точности ты находишься?

И кость может дать такие ответы:

Ответ  1 (О1): У меня на верхней грани шестерка.

Ответ  2 (О2): Мои координаты [широта, долгота, высота]: [27.1789335252, 78.0224962785, 1.232432].

Эта идея приводит нас к важному определению, имеющему далеко идущие последствия. Назовем квантовым состоянием физической системы полный набор определенных фактов, которые система, если ее спросить, сообщит о себе. Так, квантовое состояние нашего кубика будет определяться двумя ответами О1 и О2 и кратко записываться следующим образом: [О1; О2] = [6 ; 27.1789335252, 78.0224962785, 1.232432], где точка с запятой разделяет различные поставленные вопросы, на которые получены ответы.

Здесь ключевым обстоятельством является то, что эти ответы содержат всю определенную информацию, которую кубик должен предоставить. Это кажется совершенно тривиальным утверждением, но внимание!  из этого утверждения о фундаментальной простоте системы следует огромное число результатов, противоречащих интуиции. Посмотрим, каких именно.

Во-первых, ясно, что есть разные состояния, в которых наша кость может находиться. Чтобы их описать, вообразим, что мы получили полный (включены все возможности) перечень взаимоисключающих ответов (только один из них может быть истинным для системы в каждый заданный момент времени) на каждый вопрос. Для кости это будет означать 6 возможностей в О1 одна из шести граней вверху и все ее (кости) возможные положения в ответах О2. Квантовое состояние кости может соответствовать любой одной паре из набора всех возможных ответов, и все возможные определенные ответы, которые может дать кость, находятся где-то в этом перечне.

Теперь мы подошли к ключевому моменту. Хотя мы включили в список всего два вопроса, что будет, если мы все-таки пойдем дальше и зададим еще один вопрос (назовем его В3)  например, какая сторона кубика смотрит на восток? И теперь у нас появилась головоломка: В3 справедливый вопрос, соответствующий эксперименту, который мы можем реально провести. Мы можем взглянуть на кубик с востока и увидеть, какая грань обращена к нам. То есть кубик Должен дать нам ответ.

Назад Дальше