Космологические коаны. Путешествие в самое сердце физической реальности - Энтони Агирре 19 стр.


И он дает. Но ответ не может быть теперь определенным, не так ли? У нас уже есть исчерпывающий список вопросов, на которые мы получаем определенные ответы, и вопроса Вз в нем нет! Следовательно, должны быть ситуации, в которых ответом могла бы быть двойка, тройка или четверка. (Могла бы быть и шестерка, даже в том случае, когда мы знали бы, что шестерка на верхней грани, а не на восточной!) И это значит, что возникает неустранимая неопределенность в том, какой ответ даст наша игральная кость.

Это не значит, что все возможности одинаково вероятны. Квантовая механика дает очень прозрачное математическое правило (называемое правилом Борна) для определения того, насколько правдоподобен каждый ответ для данного состояния кубика. То есть оно дает возможность определить вероятность каждого ответа еще до проведения измерений.

Таким образом, вероятности появились в совершенно, казалось бы, простом вопросе о состоянии системы, о которой мы знаем все, что нужно знать.

Нам невероятно трудно представить физические вещи, которые в этом смысле принципиально просты. Когда мы представляем себе нашу действительно простую квантовую кость с шестеркой на верхней грани, мы, естественно воображаем неподвижный кубик, у которого грань (скажем) с четверкой смотрит на восток, с двойкой на юг и т. д. Но это неправильно! Состояние покоя было бы свойством обладания нулевой скоростью, и ориентация на восток грани с четверкой тоже была бы свойством. Однако кубик имеет только два свойства его местоположение и определенная цифра на верхней грани. Это ограничение сильно противоречит нашей интуиции. Когда мы определяем свойство, которое некий объект может иметь, легко забыть, что это свойство изобретено нами, поскольку обычно, изобретая свойство, мы в глубине души уверены, что объект либо имеет это свойство, либо не имеет. И когда с этим свойством нам все становится ясно, то препятствия к переходу к другому свойству, и еще к одному, и еще вроде как исчезают, и, похоже, явного предела количеству свойств, которые мы можем придумать, нет. Но квантовая реальность устроена иначе.

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

В квантовой механике существует красивый и точный способ описать все это, и называется он суперпозицией. Мы можем считать суперпозицией состояний набор «взвешенных» ответов на один вопрос, выраженных через ответы на другой вопрос. Например, для квантовой кости[43] состояние [ft], то есть один ответ на вопрос В1, есть то же самое состояние, что и сумма по состояниям, которые бы дали точные ответы на вопросы Вз относительно того, какая грань ориентирована на восток. Это можно записать так:

[5] = C1 [1] + C2 [2] + C3 [3] + C4 [4] + C5 [5] +C6 [6],

где направленные вправо горизонтальные стрелки означают направленность на восток, а C1 C6 числа. Это выражение означает, что квантовое состояние [5] дает определенный ответ на вопрос В1, но содержит все шесть возможных ответов на вопрос В3. Вероятности находятся из чисел C1 C6, которые показывают, какую часть состояния [5] составляет каждое из состояний [1],[6][44]. Вероятность, например, получить состояние [3] при измерении оказывается равной 1/16. Таким образом, суперпозиция это другой способ сказать, что какое-то свойство не определено, и система имеет чуть-чуть одного свойства и чуть-чуть другого. Но только одна из этих возможностей проявится при измерении.

Ну а что происходит после этого измерения? Мы уже знаем ответ на вопрос В3, поскольку только что его нашли. Следовательно, состояние кубика должно быть таким, которое бы имело определенный ответ на вопрос В3. И если бы мы измерили эту величину, эта часть состояния могла бы быть [3], а полное состояние могло бы быть, например, таким: [О3; О2] = [3; 27.1789335252, 78.0224962785, 1.232432]. Таким образом, мы определили, что если мы зададим системе вопрос, на который она готова дать определенный ответ, то получим этот ответ, никак не изменив систему (а только что-то узнав о ней). Но если мы задаем вопрос, на который система не готова дать определенный ответ, мы все равно получим какой-то ответ, и система, давая этот ответ, перейдет в состояние, в котором у нее будет определенный ответ на этот вопрос как раз тот, который мы только что получили[45].

Есть еще один момент, необходимый для завершения картины. Предположим, мы задаем системе какие-то вопросы и получаем какие-то ответы и в результате система переходит в некоторое состояние, соответствующее только что полученным нами ответам. Оставим теперь ее в покое. Что с ней будет происходить? Квантовая механика утверждает, что квантовое состояние само по себе изменяется со временем, и это изменение описывается некоторым уравнением, названным в честь Эрвина Шрёдингера. Как и в уравнениях Ньютона и Максвелла, в уравнении Шрёдингера используются начальные условия для системы ее состояние в начальный момент и определяется ее состояние во все последующие моменты времени. Таким образом, мы получаем описание и прогноз дальнейшего поведения системы, то есть эволюцию ее состояния.

Пожалуй, новых понятий квантовое состояние, суперпозиции, уравнение Шрёдингера и вероятности при измерениях появилось слишком много, так что нужно время, чтобы с ними освоиться. Хорошая новость, однако, состоит в том, что в действительности это почти все, что есть в квантовой механике. Разумеется, есть огромное множество невероятно тонких сопутствующих идей и приложений, а также множество технических приемов, позволяющих применить их к конкретным системам, но основное ядро теории составляют только эти несколько элементов.

Давайте подведем итоги, сравнив предсказания в рамках квантового формализма с тем, как это будет делать наш (классический) симулятор. Для начала мы определим конкретный процесс измерения, состоящий в определении того, какая сторона игральной кости находится вверху, а также определим набор состояний, каждое из которых соответствует одному из шести возможных результатов измерения. Затем в данный начальный момент времени припишем системе какое-то состояние на основе нашего знания о ней или измерения ее свойств. Далее мы посмотрим, как система эволюционирует, используя уравнение Шрёдингера. И тогда, наконец, зададим свой вопрос: какая грань окажется сверху? Для того чтобы это предсказать, рассчитаем состояние системы в момент, когда будет произведено измерение, с помощью правила Борна сравним его с каждым из состояний при возможных исходах и, наконец, на основе этого сравнения присвоим каждому исходу свою вероятность.

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

Таким образом, возникает довольно прозрачная аналогия между тем, как с одной стороны квантовая механика, а с другой «симулятор», работа которого основана на не квантовой физике, прогнозируют результат бросания кости, прослеживая эволюцию брошенной кости от некоторых начальных условий (рис. ниже). Оба процесса дают результат с некоторой неопределенностью. Но эти неопределенности имеют принципиально разную природу. Результат симулятора неопределенен из-за небольших неточностей как в начальных условиях, так и в динамике,  и эти маленькие неопределенности превращаются в процессе полета кости в большие. Однако легко представить, что, взяв лучшие камеры, более быстрые компьютеры и усовершенствовав программы, можно улучшить точность предсказания.



Предсказание результата бросания кости с помощью квантовой механики и классического симулятора.


В квантовом случае мы не обязательно получим определенный ответ на интересующий нас вопрос, даже если мы задали его немедленно и даже если начальное состояние известно с идеальной точностью. Хуже того: динамика системы делает чрезвычайно маловероятной возможность, что состояние кости даст определенный ответ на вопрос, который мы зададим позже. Уравнение Шрёдингера (как мы вскоре увидим) «пытается размыть» состояния с точным местоположением в состояния с постепенно все менее определенным положением или скоростью. Уточним для ясности, что квантовые неопределенности у объектов в повседневной жизни чрезвычайно малы, и у нас есть огромный запас времени для того, чтобы улучшать точность нашего великолепного симулятора процесса бросания кости, не заботясь об этих неопределенностях. Но на каком-то уровне точности они появятся и станут абсолютно неустранимыми.

Итак, могут ли быть такие броски кости, результаты которых не сумеет уверенно предсказать даже джинн с его идеальным пониманием мира? Квантовая теория отвечает на этот вопрос утвердительно. При достижении совершенного знания джинн приобретает состояние, в котором предсказание некоторых наблюдаемых обязательно будет не определенным, а вероятностным. Даже если он знает все, что нужно знать, и в точности знает, как отвечающее этому знанию состояние развивается во времени, он не сможет ответить с уверенностью на некоторые совершенно уместные и очень существенные вопросы. И джинну не удастся привести определенных достаточных оснований, объясняющих, почему исход будет тем, а не иным.

Но все же мы могли бы возразить: если кость брошена, разве вселенная не знает исход броска? И если мы не можем узнать ответ, но можем задать хорошо сформулированный вопрос, то разве ответа на него не существует?

Ответ на вопрос нельзя получить, если вопрос не задан, а когда он задан, он не может остаться без ответа.

13. Проход паломников через ворота

(Монастырь Самье, Тибет, 1612 год)

С вершины горы открывается великолепный вид на монастырь и на движение праздничной толпы. Несколько часов ты наблюдал за тем, как паломники проходили через узкие ворота в храмовый комплекс. Каждый паломник, пройдя через ворота, раскручивал свой ручной молитвенный барабан. Ты удивился, увидев, что все паломники раскручивают свои барабаны с одной и той же скоростью: один оборот за шаг. Они идут с одинаковыми скоростями, в медитативном темпе по главной монастырской дороге и скапливаются у стены просторного павильона.

Плотность потока постоянно нарастает, так что перед входом выстраивается очередь из паломников, и, чтобы избежать заторов, в какой-то момент из монастыря выбегает монах, который открывает еще одни ворота, расположенные точно на север от первых. Очень скоро образуются два постоянных потока паломников, проходящих через ворота с такой скоростью, что (сосредоточившись на своих молитвах) они едва не сталкиваются друг с другом.

Ты поражаешься, когда замечаешь, что если при сближении двух паломников их барабаны синхронизованы (спиннеры цепочки с грузиками, служащие для раскручивания барабанов,  направлены в одну сторону), то паломники не сталкиваются друг с другом. Но если спиннер барабана у одного направлен на север, а у другого на юг, то цепочки с грузиками запутываются и паломники вынуждены останавливаться, чтобы их распутать.

Назад Дальше