Путеводитель по лжи [Критическое мышление в эпоху постправды] - Дэниел Левитин 16 стр.


КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

Вероятности позволяют нам представить будущие события в цифрах и помогают принимать практические решения. Без них мы можем поддаться обаянию пустых анекдотов и забавных историй. Может, вы слышали, что кто-нибудь говорил: «Я не буду пристегиваться в машине, потому что слышал историю, когда парень погиб из-за того, что был пристегнут[80]. Он оказался в собственной машине, как в ловушке, и не смог из нее выбраться. Если бы он не был пристегнут, то остался бы жив».

Да, конечно, но мы не можем делать выводы из одной или двух историй. Каковы относительные риски? Хотя есть несколько таких случаев, когда ремень безопасности стоил человеку жизни, все же без него вероятность смертельного исхода гораздо выше. Вероятность помогает нам взглянуть на ситуацию с помощью цифр.

Мы используем слово «вероятность» по-разному, чтобы обозначить разные вещи. Очень легко запутаться, считая, что человек имеет в виду одно, тогда как на самом деле он думает совсем другое. Подобное заблуждение может привести к тому, что сделанные нами выводы окажутся неверными.

В основе одного из видов вероятности классической лежит идея симметрии и равной вероятности: у игрового кубика шесть граней, у монеты две стороны, у колеса рулетки 38 слотов (это в США в Европе 37)[81]. Если исключить производственный брак или жульничество, в результате которого можно фальсифицировать желаемый результат, то все исходы равновозможны. То есть вероятность выкинуть на кубике конкретное число равна одной шестой; вероятность выпадения решки при подбрасывании монеты равна одной второй; в случае с игрой в рулетку вероятность любого слота 1/38 или 1/37.

Классическая вероятность ограничена подобного рода структурами, в которых уже все четко определено и задано. В классическом случае мы знаем точно параметры системы и поэтому можем подсчитать вероятность для каждого возможного случая. Второй вид вероятности возникает потому, что в повседневной жизни мы часто хотим знать вероятности событий, которые не включены в такую симметричную схему. Нам интересно, какова вероятность того, что лекарство поможет пациенту или что клиенты предпочтут один сорт пива другому. В этом случае нам нужно сначала оценить параметры системы, потому что изначально они не заданы.

Чтобы определить, что же собой представляет второй тип вероятности, мы делаем наблюдения или проводим эксперименты, а также считаем, сколько раз получился желаемый результат. Это так называемая частотная, или статистическая, вероятность. Мы назначаем лекарство группе пациентов и смотрим, скольким из них станет лучше,  это эксперимент, и вероятность того, что лекарство сработает, определяется как доля людей, которым оно помогло (мы основываемся на частоте случаев с желаемым результатом). Если провести такой эксперимент на большом количестве людей, результат будет очень близок к истинной вероятности, так же, как при опросах общественного мнения[82].

И классическая, и частотная вероятность имеют дело с повторяющимися, воспроизводимыми событиями, а также с долей случаев, которые приводят к определенному исходу в практически неизменных условиях (некоторые бескомпромиссные теоретики настаивают на том, что условия должны быть абсолютно идентичными, но я думаю, что они заходят слишком уж далеко, потому что в пределе Вселенная никогда не бывает абсолютно одинаковой, всегда есть случайные вариации)[83]. Когда вы проводите опрос общественного мнения среди случайных людей, то делаете это в идентичных условиях, даже если одних людей вы опрашиваете сегодня, а других завтра (конечно, при условии, что в этом промежутке не произойдет ничего такого, что могло бы изменить их точку зрения). Когда свидетельница в суде дает показания и говорит, что ДНК подозреваемого совпадает с ДНК крови, найденной на пистолете, она использует частотную вероятность, потому что скорее принимает в расчет те фрагменты ДНК, которые совпадают, нежели те, которые различаются[84]. Когда вы вытягиваете карту из колоды, отсортировываете дефектную деталь на конвейере или спрашиваете участников опроса, любят ли они определенную марку кофе,  все это примеры классической или частотной вероятности повторяющегося, воспроизводимого события (в примере с картой классическая вероятность, в примере с деталью на конвейере или кофе частотная).

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

Давайте разберемся на примере. Когда ведущая прогноза погоды сообщает, что вероятность дождя завтра 30 %, мы знаем, что она не проводила экспериментов в течение нескольких идентичных в плане погодных условий дней (даже если бы такое было возможно). Цифра в 30 % выражает степень ее уверенности{19} (по шкале от одного до 100) в том, что будет дождь, и своей целью она ставит доведение до вашего сведения некоей информации, которая может заставить вас призадуматься, нужны ли вам будут завтра галоши и зонтик.

Если ведущая прогноза погоды хорошо проверенный источник, то дождь будет идти в 30 % случаев, про которые она говорила, что вероятность дождя 30 %. Если дождь будет идти в 60 % случаев, то она ошиблась, и намного. Вопрос о том, насколько проверен источник, важен только в случае с субъективной вероятностью.

Кстати, давайте вернемся к вашей подруге, сказавшей, что ее шансы пойти на вечеринку равны 50 %. Многие из тех, кто не привык мыслить критически, часто допускают подобную ошибку: они полагают, что если есть два варианта, то они должны быть равновероятны. Когнитивные психологи Амос Тверски{20} и Дэниел Канеман{21} описали вечеринки и иные возможные сценарии людям, участвовавшим в эксперименте. На конкретной вечеринке, например, гостям могут сказать, что в зале присутствуют 70 % писателей и 30 % инженеров. Если вы столкнетесь с кем-то, у кого будет татуировка с портретом Шекспира, то справедливо решите, что перед вами один из пишущей братии, но если вы наткнетесь на кого-то с уравнением Максвелла{22} на футболке, то справедливо решите, что перед вами инженер. А что, если вы столкнетесь с человеком без опознавательных признаков ни татуировки, ни математических формул на футболке,  какова вероятность того, что перед вами инженер? В опросах, проведенных Тверски и Канеманом, люди обычно говорили о вероятности «50 на 50», совершенно не видя разницы между двумя возможными исходами и двумя одинаково вероятными исходами[85].

Субъективная вероятность единственная из всех возможных, находящихся в нашем распоряжении в тех ситуациях, где нет места эксперименту и симметрии условий. Когда судья дает присяжным указание вынести вердикт, указывает ли «перевес улик» на вину ответчика, то налицо субъективная вероятность каждый из присяжных должен самостоятельно решить, есть ли перевес, взвешивая все улики на весах собственных внутренних (возможно, не объективных) принципов и убеждений.

Когда букмекер оценивает шансы на скачках, он пользуется субъективной вероятностью хотя послужной список лошади, здоровье и история наездника тоже могут предоставить некую информацию, тут нет естественной симметрии (это не случай классической вероятности) и тут нет никакого эксперимента (что исключает возможность частотной вероятности). Тот же принцип действует и в бейсболе или любом ином виде спорта. Букмекер может сказать, что шансы «Роялс» выиграть следующий матч равны 80 %, но это не вероятность в математическом смысле; просто таким образом он и мы вместе с ним использует язык, чтобы придать своим словам весомость, числовую точность. Букмекер не может повернуть стрелки часов вспять и просмотреть несколько раз один и тот же матч «Роялс», чтобы подсчитать, сколько раз они его выиграют. Он может, правда, подсчитать все математически или использовать компьютер, чтобы построить базу для оценки, но, в конце концов, его числа всего лишь догадка, степень его уверенности в собственном предсказании. Субъективность оценок подтверждается тем, что у разных экспертов получаются разные числа[86].

Субъективные вероятности окружают нас, при том что мы в большинстве своем их не замечаем мы встречаемся с ними в газетах, в залах заседания совета директоров, в спортзалах. Вероятность того, что какая-нибудь страна, не отличающаяся политической чистоплотностью, в ближайшие 12 месяцев взорвет атомную бомбу, что процентная ставка возрастет в следующем году, что Италия выиграет мировой кубок или что солдаты займут определенную высоту,  всегда субъективна, это не частотная вероятность.

Это все разовые, невоспроизводимые события. И репутация экспертов и предсказателей зависит от того, насколько правильны их прогнозы.

Комбинации вероятностей

Одно из самых важных правил теории вероятностей правило умножения. Если два события независимы друг от друга то есть одно из них никак не влияет на исход другого,  вы получите вероятность того, что они оба произойдут, перемножив вероятности каждого. Вероятность того, что при подбрасывании монеты выпадет орел, равна одной второй (потому что существует всего два возможных варианта: орел или решка). Вероятность того, что из колоды вы вытянете червовую карту, равна одной четвертой (потому что есть четыре возможных варианта: черви, пики, трефы и бубны). Если вы подкидываете монету и вытягиваете карту, то вероятность того, что у вас получатся и орел, и черви, высчитывается с помощью умножения двух отдельных вероятностей:

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

Субъективные вероятности окружают нас, при том что мы в большинстве своем их не замечаем мы встречаемся с ними в газетах, в залах заседания совета директоров, в спортзалах. Вероятность того, что какая-нибудь страна, не отличающаяся политической чистоплотностью, в ближайшие 12 месяцев взорвет атомную бомбу, что процентная ставка возрастет в следующем году, что Италия выиграет мировой кубок или что солдаты займут определенную высоту,  всегда субъективна, это не частотная вероятность.

Это все разовые, невоспроизводимые события. И репутация экспертов и предсказателей зависит от того, насколько правильны их прогнозы.

Комбинации вероятностей

Одно из самых важных правил теории вероятностей правило умножения. Если два события независимы друг от друга то есть одно из них никак не влияет на исход другого,  вы получите вероятность того, что они оба произойдут, перемножив вероятности каждого. Вероятность того, что при подбрасывании монеты выпадет орел, равна одной второй (потому что существует всего два возможных варианта: орел или решка). Вероятность того, что из колоды вы вытянете червовую карту, равна одной четвертой (потому что есть четыре возможных варианта: черви, пики, трефы и бубны). Если вы подкидываете монету и вытягиваете карту, то вероятность того, что у вас получатся и орел, и черви, высчитывается с помощью умножения двух отдельных вероятностей:

Назад Дальше