Асимметричность портфеля. Этот показатель выражает степень асимметричности платежной функции портфеля относительно текущего значения индекса. Поскольку концепция, лежащая в основе частично-направленной стратегии, включает в себя элемент прогноза и не требует нейтральности по отношению к рынку, коэффициент асимметричности может достигать достаточно больших значений. Если в случае дельта-нейтральной стратегии коэффициент асимметричности не превышал 0,35 (для всех значений порога критерия, диапазона страйков, волатильности рынка и периода времени до истечения опционов, см. рис. 1.4.16), то для частично-направленной стратегии этот показатель находится в диапазоне 0,41,4. Тем не менее сведение асимметричности к минимуму (при сохранении элемента прогноза) является важной задачей при разработке частично-направленных стратегий. Поэтому необходимо производить поиск таких сочетаний параметров, которые позволяют снизить асимметричность портфеля. Пример зависимости коэффициента асимметричности от значений порога критерия и диапазона страйков для двух уровней волатильности (при построении портфеля из краткосрочных опционов) представлен на рис. 1.5.16. Во время спокойного рынка асимметричность портфеля достигает максимума при наименьших ограничениях, накладываемых на параметры (низкий порог критерия и широкий диапазон страйков). В период высокой волатильности максимум асимметричности смещается в область более высоких значений порога критерия. Наибольшее значение имеет тот факт, что как во время спокойного рынка, так и в периоды кризиса существует достаточно большое количество сочетаний (порог критерия × диапазон страйков), для которых асимметричность портфеля находится на приемлемо низком уровне.
Вероятность убытка. Зависимость вероятности убытка от порога критерия и диапазона страйков похожа по форме на зависимость, описанную для дельта-нейтральной стратегии. Такое подобие наблюдается для обоих уровней волатильности (рис. 1.4.17). Единственное отличие (наблюдаемое только в спокойный период и лишь при построении портфелей из долгосрочных опционов) состоит в том, что если для дельта-нейтральной стратегии вероятность убытка увеличивается по мере расширения диапазона страйков, то для частично-направленной стратегии данный параметр не влияет на вероятность убытка. Для всех вариантов сочетания (диапазон страйков × порог критерия) абсолютное значение вероятности убытка частично-направленных портфелей несколько выше по сравнению с дельта-нейтральными.
VaR. Для дельта-нейтральной стратегии было отмечено, что период времени, остающийся до экспирации опционов, влияет на VaR портфелей гораздо сильнее, чем волатильность рынка (рис. 1.4.19). Такой же феномен был отмечен нами и для частично-направленной стратегии (при использовании двухмесячных опционов вместо недельных VaR увеличивается в несколько раз). Для дельта-нейтральной стратегии VaR достигал максимума при самых низких значениях порога критерия и при наиболее широких диапазонах страйков. В случае частично-направленной стратегии пик VaR несколько смещается в область более высоких значений порога критерия; особенно это заметно в период высокой волатильности (рис. 1.5.17).
1.6. Дельта-нейтральный портфель как основа опционной стратегии
1.6.1. Структура и свойства портфеля на границах дельта-нейтральности
В предыдущих разделах мы описали два основных аспекта дельта-нейтральной и частично-направленной опционных стратегий: (1) расположение и протяженность границ дельта-нейтральности, (2) характеристики, определяющие структуру и свойства доступных опционных портфелей. Теперь необходимо объединить эти два аспекта в общую концепцию построения и выбора оптимального дельта-нейтрального портфеля.
Границы дельта-нейтральности представляют собой множество портфелей, объединенных одним общим признаком их дельта равна нулю. В этом отношении все они одинаковы. Однако эти портфели очень сильно разнятся по многим другим важным характеристикам. По сути, эти характеристики определяют целый комплекс качеств, от которых зависят риски и доходность создаваемой торговой стратегии. В этом разделе мы продемонстрируем методику определения структуры и свойств портфелей, находящихся на границах дельта-нейтральности. Хотя формально все портфели, расположенные на этой границе, пригодны для использования в рамках любой опционной стратегии, необходимо выбрать из них единственный вариант (или несколько равнозначных альтернатив), обладающий наилучшими характеристиками. В этом разделе мы будем использовать примеры, относящиеся к дельта-нейтральной торговой стратегии. Однако описанная ниже методика может быть в равной мере применена к любой опционной стратегии. (Проблеме выбора оптимального портфеля будет посвящен следующий раздел.)
1.6. Дельта-нейтральный портфель как основа опционной стратегии
1.6.1. Структура и свойства портфеля на границах дельта-нейтральности
В предыдущих разделах мы описали два основных аспекта дельта-нейтральной и частично-направленной опционных стратегий: (1) расположение и протяженность границ дельта-нейтральности, (2) характеристики, определяющие структуру и свойства доступных опционных портфелей. Теперь необходимо объединить эти два аспекта в общую концепцию построения и выбора оптимального дельта-нейтрального портфеля.
Границы дельта-нейтральности представляют собой множество портфелей, объединенных одним общим признаком их дельта равна нулю. В этом отношении все они одинаковы. Однако эти портфели очень сильно разнятся по многим другим важным характеристикам. По сути, эти характеристики определяют целый комплекс качеств, от которых зависят риски и доходность создаваемой торговой стратегии. В этом разделе мы продемонстрируем методику определения структуры и свойств портфелей, находящихся на границах дельта-нейтральности. Хотя формально все портфели, расположенные на этой границе, пригодны для использования в рамках любой опционной стратегии, необходимо выбрать из них единственный вариант (или несколько равнозначных альтернатив), обладающий наилучшими характеристиками. В этом разделе мы будем использовать примеры, относящиеся к дельта-нейтральной торговой стратегии. Однако описанная ниже методика может быть в равной мере применена к любой опционной стратегии. (Проблеме выбора оптимального портфеля будет посвящен следующий раздел.)
Для того чтобы определить характеристики дельта-нейтральных портфелей, необходимо выполнить следующие процедуры:
1. Представить границу дельта-нейтральности в виде последовательности точек, каждая из которых задается парой координат на плоскости (порог критерия × диапазон страйков). Поскольку теоретически граница может состоять из бесконечного количества точек, необходимо определить некий дискретный шаг для определения координат точек. Для обоих параметров, «порог критерия» и «диапазон страйков», мы примем этот шаг равным 1 %.
2. Представить зависимость исследуемой характеристики от порога критерия и диапазона страйков в виде топографической карты. (Ранее эти зависимости были представлены в виде трехмерных графиков, см. рис. 1.4.111.4.13 и 1.4.161.4.19.) Горизонтальная и вертикальная оси карты соответствуют значениям параметров «порог критерия» и «диапазон страйков», а высотная отметка каждой точки на карте выражает значение характеристики, соответствующее определенному портфелю.
3. Нанести на топографическую карту соответствующую ей границу дельта-нейтральности. Координаты точек, составляющих границу, будут соответствовать координатам дельта-нейтральных портфелей. Высотные отметки карты в месте нахождения точек будут соответствовать значениям, принимаемым исследуемой характеристикой.
4. Повторяя последовательно процедуры 13 для каждой характеристики, мы получим набор всех характеристик для каждого дельта-нейтрального портфеля.
На рис. 1.6.1 показан результат выполнения первых трех процедур для характеристики «вероятность убытка». В этом примере использовались те же данные, что и в предыдущем разделе: дата создания портфелей 11 января 2010 г., даты экспирации 15 января 2010 г. (для недельных опционов) и 19 марта 2010 г. (для двухмесячных опционов). Точки и границы дельта-нейтральности были определены с помощью методики, описанной в разделе 1.4.3. Топографическая карта была построена, основываясь на принципах, применявшихся ранее для построения рис. 1.4.3 и 1.4.8. И, наконец, границы и карты были построены в общей системе координат (рис. 1.6.1), что позволит нам определить величину характеристики «вероятность убытка» для каждого дельта-нейтрального портфеля. Высотные отметки топографической карты показывают вероятность убытка для каждого портфеля, находящегося на границе дельта-нейтральности (равно как и для всех прочих, не интересующих нас портфелей, находящихся вне этой границы).
Рис. 1.6.1 визуально представляет процедуры определения характеристик дельта-нейтральных портфелей, однако он не позволяет получить точные значения этих характеристик (поскольку высотные отметки на топографической карте представляются в виде интервалов значений). Кроме того, создание автоматизированной торговой стратегии исключает визуальный анализ и требует разработки расчетного алгоритма. Продемонстрируем процедуру определения точных значений характеристики «вероятность убытка» на примере данных, представленных на верхней карте рис. 1.6.1 (когда портфели формировались из опционов с ближайшей датой истечения).
В этом случае были получены две границы дельта-нейтральности. Одна из них проходит сначала параллельно оси диапазона страйков, а затем резко поворачивает и идет вдоль оси порога критерия (мы не будем рассматривать эту границу, поскольку все портфели на ней имеют очень низкие значения либо одного, либо другого параметра). Вторая граница пересекает топографическую карту от верхней левой части к правой нижней области (портфели на этой границе имеют самые разнообразные сочетания значений двух параметров). Заменим топографическую карту таблицей, ячейки которой отображают вероятности убытка, соответствующие всем возможным вариантам (порог критерия × диапазон страйков). В таблице 1.6.1 ячейки, соответствующие точкам дельта-нейтральности, отмечены серым цветом. Обратите внимание, что расположение серых ячеек повторяет форму границы дельта-нейтральности на верхнем рис. 1.6.1. Значения серых ячеек выражают вероятности убытков соответствующих им дельта-нейтральных портфелей. Такой способ определения характеристик портфелей достаточно прост, легко программируем и исключает влияние субъективного фактора, неизбежного при визуальном анализе графиков.