Рис. 8.2(начало). Как специальная теория относительности приводит к полям: а здесь изображены мировые линии нескольких частиц, показывающих, как их положения (горизонтальная ось) меняются с течением времени (вертикальная ось)
Рис. 8.2(продолжение). Как специальная теория относительности приводит к полям: б если существует предельная скорость, то совокупная сила, воздействующая на любую данную частицу, будет зависеть от того, где другие частицы находились в прошлом. На рисунке также обозначены «линии воздействия», отражающие процесс распространения воздействия с предельной скоростью с; в чтобы определить совокупную силу, мы можем либо отслеживать прошлые положения всех тел, либо просто сосредоточиться на сумме воздействий. Первая процедура соответствует теории частиц, а вторая (потенциально гораздо более простая) теории поля
Такой переход от описания частиц к описанию поля окажется особенно продуктивным, если поля подчиняются простым уравнениям так, что мы можем вычислить будущие значения полей, исходя из значений, которые они имеют в настоящее время, без необходимости учитывать прежние значения. Теория электромагнетизма Максвелла, общая теория относительности и КХД обладают этим свойством. Очевидно, Природа воспользовалась полями для сохранения относительной[25] простоты вещей.
Глюоны и Сетка
Глюоны и Сетка
Эйнштейн и Фейнман не знали о логике, предполагающей необходимость полевого описания для фундаментальной физики. Тем не менее, как мы уже видели, каждый из них был готов (и даже жаждал) вернуться к описанию, связанному с частицами.
То, что эти два великих физика в разное время и по разным причинам могли ставить под сомнение существование полей, заполняющих все пространство (важнейший аспект Сетки), показывает, что факт их существования не являлся ошеломляющим даже в XX веке. Сомнения были обусловлены недостаточным количеством надежных доказательств того, что поля живут своей собственной жизнью. В своих комментариях к рис. 8.2 я отметил удобство полей. Однако это еще не говорит о том, что они являются необходимыми составляющими абсолютной реальности.
Я не думаю, что Эйнштейн когда-либо был уверен в существовании электромагнитного эфира. Одной из его наиболее сильных сторон как физика-теоретика, которая также могла быть его слабостью, являлось упрямство. Упрямство сослужило ему хорошую службу, когда он настоял на разрешении противоречия между двумя теориями относительности, механической и электромагнитной, в пользу последней. Оно также пригодилось ему, когда он настоял на том, что идеи Планка следует воспринять серьезно и разработать их, несмотря на то, что они противоречили существующей теории. Упрямство Эйнштейна помогло ему справиться со сложной и незнакомой математикой, необходимой для общей теории относительности. С другой стороны, оно помешало ему стать частью грандиозного успеха современной квантовой теории после 1924 года, когда в игру вступили неопределенность и индетерминизм. Оно также не позволило ему принять одно из самых впечатляющих следствий его собственной общей теории относительности существование черных дыр.
Затруднения Эйнштейна, связанные с примирением квантовой дискретности фотонов с непрерывными полями, заполняющими пространство, которые со времен Максвелла с большим успехом использовались для описания света, преодолеваются в современной концепции квантовых полей. Квантовые поля заполняют все пространство, а квантовые электрические и магнитные поля подчиняются уравнениям Максвелла[26]. Тем не менее, наблюдая квантовое поле, вы обнаруживаете, что его энергия упакована в дискретные единицы фотоны. В следующей главе я гораздо подробнее расскажу о странных, но очень успешных концепциях, лежащих в основе квантовой теории поля.
Что касается Фейнмана, то он сдался, когда в процессе разработки математического аппарата для своей версии квантовой электродинамики обнаружил, что введенные для удобства поля живут своей собственной жизнью. Он сказал мне, что утратил уверенность относительно своей программы по опустошению пространства, когда увидел, что и его математический аппарат, и экспериментальные факты требуют введения своего рода поляризации вакуума в электромагнитные процессы, изображенные на рис. 8.3 (так как их описал Фейнман с помощью своих диаграмм). Часть а соответствует сложному способу обобщения той же физики, которую мы видели на рис. 8.2. Часть б добавляет нечто новое. Здесь электромагнитное поле модифицируется благодаря взаимодействию со спонтанной флуктуацией в электроне, или, иными словами, взаимодействию с виртуальной парой «электрон позитрон». При описании этого процесса очень сложно избежать ссылок на заполняющие пространство поля.
Рис. 8.3. Сила, действующая между электрически заряженными частицами: а краткое изложение физики, представленной на рис. 8.2, на языке диаграмм Фейнмана. На этом уровне электрические и магнитные поля задаются уравнениями Максвелла; однако их также можно проследить до воздействия заряженных частиц. Поля удобны, но, вероятно, мы могли бы обойтись и без них; б дает кое-что новое. Этот вклад в электромагнитные поля определяется спонтанными флуктуациями (виртуальными парами «частица античастица») в электронном поле
Данная виртуальная пара является следствием спонтанного поведения электронного поля. Это может произойти в любом месте. И где бы оно ни произошло, электромагнитное поле может его ощутить. Эти два события флуктуации, которые могут происходить и ощущаться где угодно, совершенно непосредственно отражаются в математических выражениях, сопровождающих рис. 8.3, б. Они приводят к сложным, небольшим, но очень специфичным модификациям силы, которую вы вычислили бы с помощью уравнений Максвелла. Эти модификации наблюдались в ходе проведения точных экспериментов.
В КЭД поляризация вакуума представляет собой небольшой эффект, как качественно, так и количественно. В КХД, напротив, она имеет первостепенное значение. В главе 6 мы видели, как это приводит к асимптотической свободе и тем самым позволяет успешно описывать образование струй. В следующей главе мы увидим, как КХД используется для вычисления массы протонов и других адронов. Наши глаза не способны различать крошечные временные промежутки (1024 секунды) и расстояния (1014 сантиметра), где разворачивается основное действие. Однако мы можем проанализировать компьютерные расчеты, чтобы понять, что происходит с кварковыми и глюонными полями. Для более чувствительных глаз пространство было бы похоже на ультрастробоскопическую микронано-лавовую лампу (рис. 8.4). Существа с такими глазами не разделяли бы человеческую иллюзию относительно пустоты пространства.
Рис. 8.4. Глубинная структура квантовой Сетки. Это типичная картина флуктуаций в глюонных полях КХД. Такие картины лежат в основе нашего успешного способа вычисления масс адронов, поэтому мы можем быть уверены в том, что они соответствуют действительности
Материальная Сетка
Помимо флуктуационной активности квантовых полей пространство заполнено несколькими слоями более постоянного, существенного материала. Это эфиры, в чем-то близкие по духу первоначальному эфиру Аристотеля и Декарта, они представляют собой материалы, которые заполняют пространство. В некоторых случаях мы можем определить, из чего они состоят, и даже создать их небольшие образцы.
Физики обычно называют эти материальные эфиры конденсатами. Можно сказать, что они (эфиры, а не физики) конденсируются спонтанно из пустого пространства, как утренняя роса или обволакивающий туман конденсируются из влажного, невидимого воздуха.
Лучше всего эти конденсаты можно понять в качестве состоящих из пар «кварк антикварк». Здесь мы говорим о реальных частицах, а не об эфемерных, виртуальных, которые спонтанно возникают и исчезают. Обычно этот заполняющий пространство туман из кварков и антикварков называется нарушающим хиральную симметрию конденсатом, однако давайте называть его просто QQ, сокращенно от «кварк антикварк».
Для кваркового конденсата QQ, как и для других конденсатов, существует два основных вопроса.
Почему мы считаем, что он существует?
Как мы можем удостовериться в его существовании?
Только в случае QQ мы имеем хорошие ответы на оба вопроса.
Формирование конденсата QQ обусловлено нестабильностью абсолютно пустого пространства. Предположим, что мы опустошили пространство, удалив конденсат, состоящий из пар «кварк антикварк», что проще сделать в воображении с помощью уравнений и компьютеров, чем в ходе лабораторных экспериментов. Затем мы вычисляем, что пары «кварк антикварк» имеют отрицательную совокупную энергию. Затраты энергии на производство этих частиц (mc2) более чем компенсируются энергией, которую можно высвободить из сил притяжения, действующих между ними в формируемых ими небольших «молекулах». (Эти «молекулы» кварк антикварк называются сигма-мезонами (σмезонами).) Таким образом, абсолютно пустое пространство является взрывоопасной средой, готовой взорваться реальными «молекулами», состоящими из кварка и антикварка.
Химические реакции обычно начинаются с некоторых составляющих A, B, а их результатом являются некоторые продукты C, D; поэтому мы пишем:
A + B > C + D,
а если выделяется энергия, то:
A + B > C + D + энергия.
Это выражение означает «взрыв». Таким образом, наша реакция представляет собой следующее:
[ничто] > кварк + антикварк + энергия
никаких исходных составляющих (кроме пустого пространства) не требуется! К счастью, взрыв самоограничивается. Пары частиц отталкиваются друг от друга, поэтому по мере увеличения их плотности становится все труднее вместить новые частицы. Суммарная стоимость создания новой пары включает в себя дополнительную плату, обусловленную взаимодействием с уже существующими парами. Когда чистой прибыли уже нет, производство останавливается. В результате мы получаем заполняющий пространство кварковый конденсат QQ в качестве стабильного конечного состояния.
Я надеюсь, вы согласитесь, что это интересная история. Но откуда мы знаем, что она правдива?
Один из ответов состоит в том, что математическим следствием уравнений (уравнений КХД) является наличие множества других способов проверки. Однако, несмотря на совершенную логичность данного ответа и на то, что эти проверки, как мы уже обсуждали, очень подробны и убедительны, это не наука в лучшем ее виде. Нам нужно, чтобы уравнения имели следствия, которые можно наблюдать в физическом мире.