Второй ответ заключается в том, что мы можем просчитать последствия самого конденсата QQ и проверить, соответствуют ли они тому, что мы наблюдаем в физическом мире. Говоря конкретнее, мы можем вычислить, способен ли рассматриваемый в качестве материала конденсат QQ вибрировать и как эти вибрации должны выглядеть. Это похоже на то, чем поклонники «светоносного эфира» когда-то хотели наделить свет старым добрым материалом, более существенным, чем электромагнитные поля. Вибрации кваркового конденсата QQ это не видимый свет, однако они описывают нечто совершенно определенное и наблюдаемое, а именно пи-мезоны. Среди адронов пи-мезоны обладают уникальными свойствами. Например, они, безусловно, являются самыми легкими[27] и они никогда четко не вписываются в кварковую модель. Поэтому весьма удовлетворительным, а после глубокого изучения и чрезвычайно убедительным является то, что они возникают совершенно иначе как вибрации конденсата QQ.
Третий ответ является наиболее прямым и впечатляющим из всех. Мы начали с рассмотрения мысленного эксперимента по опустошению пространства. Как насчет реализации этой идеи на практике? Такие исследования велись на Релятивистском коллайдере тяжелых ионов (РКТИ) в Брукхейвенской национальной лаборатории (Лонг-Айленд), и эта работа будет продолжена на ускорителе БАК. Ученые ускоряют два больших набора кварков и глюонов, движущихся в противоположных направлениях, в виде тяжелых атомных ядер, например, золота или свинца до очень высокой энергии, а затем сталкивают их. Это не очень хороший способ изучения основных, элементарных взаимодействий кварков и глюонов или поиска признаков новых физических явлений, поскольку одновременно происходит очень много таких столкновений. По сути, вы получаете небольшой, но очень горячий огненный шар. Были зафиксированы температуры свыше 1012 градусов (по Кельвину, Цельсию или Фаренгейту на этом уровне вы можете выбрать любую шкалу). Это в миллиард раз горячее поверхности Солнца; такие высокие температуры последний раз достигались в пределах первой секунды после Большого взрыва. При таких температурах конденсат QQ испаряется «молекулы» кварк антикварк, из которых он состоит, распадаются. Таким образом, небольшой объем пространства в течение короткого промежутка времени остается пустым. Затем по мере расширения и охлаждения огненного шара начинается наша реакция формирования пар и высвобождения энергии, и кварковый конденсат QQ восстанавливается.
Все это произойдет почти наверняка. Тем не менее мы говорим «почти», поскольку то, что мы будем наблюдать, на самом деле будет представлять собой всяческие отходы, появившиеся в процессе охлаждения огненного шара. Рисунок 8.5 представляет собой фотографию того, как это выглядит. Очевидно, что фотография изначально не содержит окружностей и стрелок, указывающих, что отвечает за тот или иной результат. Полученное изображение требует интерпретации. В данном случае интерпретация является делом гораздо более сложным, чем в случае с изображениями внутренностей протонов и струй, которые мы обсуждали в главе 6. На сегодняшний день наиболее точные и полные интерпретации строятся в процессе плавления и переформирования кваркового конденсата QQ, который мы обсуждали ранее, однако мы еще не достигли устраивающего нас уровня ясности и убедительности. Ученые продолжают работу в плане как экспериментов, так и интерпретации.
Рис. 8.5. Конечный результат столкновения тяжелых ионов миниатюрная версия Большого взрыва
Для построения следующего уровня понимания конденсата у нас есть надежные косвенные доказательства его существования, но про его состав мы пока можем только гадать. Доказательства берутся из раздела фундаментальной физики, о котором мы до сих пор не упоминали, из теории так называемого слабого взаимодействия[28]. У нас есть очень успешная теория слабого взаимодействия, которая шествовала от триумфа к триумфу с начала 1970-х годов. Следует отметить, что эта теория предсказала существование, массу и точные свойства W и Zбозонов до того, как они были обнаружены экспериментально. Обычно эта теория носит название «стандартной модели» или модели Вайнберга Глэшоу Салама, названной так в честь Стивена Вайнберга, Шелдона Глэшоу и Абдуса Салама, трех теоретиков, которые сыграли ведущую роль в ее разработке (за что и получили Нобелевскую премию в 1979 году).
Рис. 8.5. Конечный результат столкновения тяжелых ионов миниатюрная версия Большого взрыва
Для построения следующего уровня понимания конденсата у нас есть надежные косвенные доказательства его существования, но про его состав мы пока можем только гадать. Доказательства берутся из раздела фундаментальной физики, о котором мы до сих пор не упоминали, из теории так называемого слабого взаимодействия[28]. У нас есть очень успешная теория слабого взаимодействия, которая шествовала от триумфа к триумфу с начала 1970-х годов. Следует отметить, что эта теория предсказала существование, массу и точные свойства W и Zбозонов до того, как они были обнаружены экспериментально. Обычно эта теория носит название «стандартной модели» или модели Вайнберга Глэшоу Салама, названной так в честь Стивена Вайнберга, Шелдона Глэшоу и Абдуса Салама, трех теоретиков, которые сыграли ведущую роль в ее разработке (за что и получили Нобелевскую премию в 1979 году).
W и Zбозоны играют главную роль в стандартной модели. Они удовлетворяют уравнениям, очень похожим на уравнения для глюонов в квантовой хромодинамике. Оба представляют собой симметричные расширения уравнений для фотонов в квантовой электродинамике (то есть уравнений Максвелла). Динамика полей W и Zбозонов отвечает за слабые взаимодействия в том же смысле, что и поведение фотонного поля отвечает за электромагнетизм, а цветных глюонных полей за сильное взаимодействие.
Поразительное сходство между нашими фундаментальными теориями, касающимися на первый взгляд очень разных сил, намекает на возможность синтеза, в котором все они будут рассматриваться в качестве различных сторон некой всеобъемлющей структуры. Их различные симметрии могут быть подсимметриями по отношению к большей мастер-симметрии. Дополнительная симметрия позволяет уравнениям преобразовываться в самих себя большим количеством способов, то есть существует больше способов добиться «отличий без различий». Таким образом, это открывает новые возможности для установления связей между закономерностями, которые раньше казались не связанными между собой. Если наши фундаментальные уравнения описывают частичные закономерности, которые мы можем сделать более симметричными с помощью дополнений, то это наводит на мысль о том, что они на самом деле могут быть гранями более крупной, единой структуры. Антон Чехов говорил:
«Если в начале пьесы на стене висит ружье, то (к концу пьесы) оно должно выстрелить».
Я повесил ружье объединения взаимодействий.
Возвращаясь к стандартной модели: W и Zбозоны являются привлекательными ведущими игроками, но они нуждаются в помощи, чтобы сыграть роли, для которых предназначены. Предоставленные сами себе, в соответствии с определяющими их уравнениями, они не имели бы массы, подобно фотону и цветным глюонам. Тем не менее сценарий реальности требует того, чтобы они были тяжелыми. Это подобно тому, как если бы фея Динь-Динь была выбрана на роль Санта-Клауса. Чтобы фея смогла сыграть толстяка, мы должны были бы одеть ее в специальный костюм с тяжелыми накладками.
Физики знают, как провернуть этот трюк, то есть сделать так, чтобы W и Zбозоны приобрели массу. Мы так думаем. На самом деле Природа продемонстрировала нам, как это происходит. Моя жена, состоявшийся писатель и прекрасный советчик, дала мне список клишированных слов, которых следует избегать, в том числе: «удивительный», «поразительный», «великолепный», «захватывающий», «экстраординарный», другие вы можете добавить сами. В основном я следую этому совету. Однако я должен сказать, что нахожу то, что собираюсь описать, удивительным, поразительным, великолепным, захватывающим и, да, экстраординарным.
Моделью, с помощью которой Природа демонстрирует нам, как частицы переносчики взаимодействия становятся тяжелыми, является сверхпроводимость. Внутри сверхпроводников фотоны становятся массивными! Более подробное обсуждение этого вопроса можно найти в приложении Б, здесь описана только основная идея. Фотоны, как мы уже обсуждали, представляют собой движущиеся возмущения в электрических и магнитных полях. В сверхпроводнике электроны активно реагируют на электрические и магнитные поля. Попытки электронов восстановить равновесие настолько энергичны, что они оказывают своего рода сопротивление движению полей. Таким образом, вместо того, чтобы двигаться с обычной скоростью света, внутри сверхпроводника фотоны движутся медленнее. Они как бы приобретают инерцию. При изучении уравнений вы обнаруживаете, что замедленные фотоны внутри сверхпроводника подчиняются тем же уравнениям движения, что и частицы с ненулевой массой.
Если бы вы были существом, обитающим внутри сверхпроводника, то вы бы воспринимали фотон как массивную частицу.
Теперь давайте применим обратную логику. Люди являются существами, наблюдающими в своей естественной среде обитания массивные фотоноподобные частицы W и Zбозоны. Поэтому мы, люди, можем заподозрить, что мы живем внутри сверхпроводника. Разумеется, не того сверхпроводника, который практически без потерь проводит (электрический) заряд, имеющий важность для фотонов, а сверхпроводника для зарядов, имеющих важность для W и Zбозонов. Стандартная модель основана на этой идее; и, как мы уже говорили, стандартная модель очень успешно описывает реальность, в которой мы существуем.
Таким образом, мы приходим к мысли о том, что сущность, которую мы называем пустым пространством, представляет собой необычный вид сверхпроводника. Там, где есть сверхпроводимость, должен быть и проводящий материал. Наша необычная сверхпроводимость работает везде. И эта работа требует заполняющего пространство материального эфира.
Большой вопрос: что конкретно представляет собой этот материал? Что в космическом сверхпроводнике играет ту же роль, что и электроны в обычных сверхпроводниках?
К сожалению, это не может быть хорошо понимаемый нами материальный эфир QQ. На самом деле кварковый конденсат QQ представляет собой необычный сверхпроводник правильного вида, и он вносит вклад в массы W и Zбозонов. Однако в количественном отношении этот вклад примерно в тысячу раз меньше, чем нужно.