Действуй, мозг! Квантовая модель разума - Роман Бабкин 21 стр.



Примечательно, что первая версия суперкомпьютера, который готовили к поединку с Каспаровым, назывался Deep Thought (один из возможных переводов  «Думатель»). Инженеры и программисты IBM взяли это имя из фантастического романа Дугласа Адамса «Автостопом по галактике».

По сюжету произведения люди, создавшие суперкомпьютер, ищут ответ на Главный Вопрос Жизни, Вселенной и Вообще. Результат вычислений «Думателя», произведенных им в течение семи с половиной миллионов лет (!), приведён в эпиграфе к этой главе. Когда разочарованные таким ответом потомки создателей суперкомпьютера бросили ему горький упрёк, тот резонно заметил, что неплохо бы для начала чётко сформулировать вопрос.21


Сумел бы реальный Deep Blue или иной современный суперкомпьютер ответить на такой вопрос? Или, как верят свидетели трансгуманистического рая, нужно ещё немного подождать? Когда-де изобретут сверхмощный ИИ, и он, подобно хорошо известным фантастическим историям, станет за нас управлять экономикой, медициной, образованием, участвовать в урегулировании политических и семейных разногласий, и всё ж таки просветит нас  в чём смысл жизни?


Проблема в том, что, чтобы управлять чем-либо (не говоря уж о размышлении над вопросами типа «в чём смысл жизни?»), надо о том, чем управляешь, знать всё (для ответа на вопрос о смысле жизни надо определить, что понимается под «смыслом» и «жизнью»). Или, по крайней мере, быть уверенным в правилах, по которым это работает.


В отношении социогенеза и взаимодействия отдельных людей никто таким знанием не обладает. Ни какой-либо человек, ни человечество.


Почему?


Потому что у этих объектов-феноменов нет правил. И нет ограничений по объёму информации.

Почему?


Потому что у этих объектов-феноменов нет правил. И нет ограничений по объёму информации.

В поведении человека и в поведении групп людей возможно всё  в отличие от шахмат, шашек, го, покера и прочих искусственных моделей реальности, ограниченных по числу возможных состояний.


К списку, в котором фигурируют сложные явления социогенеза и феномены человеческой коммуникации, можно добавить ещё один объект.

Это живой мозг. Собственно, он-то и является источником сложности.


Раз так, то спрашивать  похож ли мозг на компьютер (то и другое умеет играть в шахматы)?  всё равно, что задаваться вопросом: «Похож ли человек на муравья (то и другое шевелится)?» или «Похожа ли Вселенная на Луну (то и другое имеет форму сферы)?».

Раз так, то всякий суперкомпьютер или любой другой гипотетический вычислитель  ИИ, Deep Thought, «Думатель» и пр.  никогда не сравнится с человеком по способности решать интеллектуальные задачи всех, какие только существуют, типов.


Проигрывая в скорости вычислений, мы всегда будем выигрывать в области невычислимого.

Т.е. в такой области, которая намного (на очень много!) превышает пространство вычислений, где не действуют никакие, заранее заданные, правила и где компьютеры бессильны.


Короче говоря, машины думать не умеют. Более того: никогда не будут уметь.


Сделав это провокационное заявление, мы вплотную подошли к обсуждению статьи Алана Тьюринга «Вычислительные машины и интеллект»  последнему популярному аргументу любителей порассуждать о мозге-компьютере.


Во-первых, заметим, что нашумевшая статья была опубликована не в математическом или физическом журнале: автор выбрал философский журнал с говорящим названием «Mind».


Помимо прочего это указывает на то, что Тьюринг не стремился сформулировать научную проблему. Ведь последнее подразумевает наличие гипотезы  утверждения о предполагаемом факте и/или закономерности.

Ничего подобного в статье нет.


Во-вторых, вопрос, который чаще всего цитируют («Могут ли машины мыслить?»), по ходу изложения трансформировался у автора в «Могут ли машины имитировать поведение человека?».


Согласимся, что вопросы относятся к разным предметам.

Первое  явный эпатаж для привлечения дополнительного интереса (с таким же успехом можно вопрошать: «Может ли трактор мыслить?» или «Есть ли у самолёта душа?»).

Второе  попытка перевести философскую проблему в прикладное русло. Которая, собственно, выразилась в предложенном математиком способе отличить человека от его имитатора  в том, что сейчас зовётся «тестом Тьюринга». 62


На мой взгляд, совершенно ясно, что Тьюринг не делал предположения о том, что машины, вообще говоря, могут мыслить.

Следовательно, эта статья, скажем, к проблеме конструирования ИИ не имеет никакого отношения. И даже не формулирует её.


Какого-либо предположения об устройстве живого мозга, как мы отметили выше, в публикации тоже нет.

Значит, о модели «мозг-компьютер» речь также не идёт.


Так о чём речь? Что интересовало Тьюринга?


«Похож ли компьютер на мозг?»  вот что, по всей видимости, хотел узнать Алан Тьюринг, и поделился этим желанием в статье 1950 года.


Кому, как не Тьюрингу, создателю концепции вычислительного автомата (подробнее  в подглаве «Computor и Computer»), спрашивать об этом? Должны ли мы удивляться, что математик попытался расширить представление о возможностях своей теории вычислений  увидеть ещё одно полезное приложение своему детищу?


В этом контексте пресловутый тест Тьюринга  не сколько-нибудь реальный способ доказать, что робот/автомат/компьютер/ИИ в результате, например, машинного обучения достиг такого уровня интеллектуального развития, что стал неотличим от человека.

Это фольклор, а не наука. Детская сказка. Сюжет для фантастического блокбастера.


Тест Тьюринга  попытка ещё раз проверить ключевую идею математика о том, что вычисления компьютера и вычисления живого мозга имеют единую фундаментальную основу. Проверить, не ошибся ли он, отождествляя эти процессы у машины и человека.


Тот счастливый для современных машинопоклонников день, когда искусственный вычислитель всё-таки пройдёт полный тест Тьюринга, будет означать не то, что компьютер может полностью заменить человеческий мозг, и не то, что якобы состоялось долгожданное рождение ИИ.

Этот день будет означать лишь тот заурядный и давным-давно интуитивно понятный факт, что наш мозг может, в том числе, вычислять, как компьютер.


Только и всего.


Увы, нам пришлось отвлечься и потратить время на разъяснения, чтобы несколько проредить туман, навеянный пылкими «говорящими головами», бессвязно и бездумно повторяющими мантры про разумных роботов, шахматные суперкомпьютеры и тест Тьюринга.


Сделав эту необходимую предварительную работу, возвращаемся к науке  к вычислительной модели живого мозга.


Как в предыдущей главе, попытаемся для начала разобраться, кому, как и почему пришла в голову оригинальная идея  интеллектуальная инновация об устройстве разума.

Бинарная логика, или Какой рост у Сократа?

Идея о механическом мозге родилась в период расцвета механической парадигмы в науке.

Идея о мозге-компьютере появилась во время становления другой научной парадигмы. Назовём её идеей вычисляемой дискретности или, проще, цифровой парадигмой.


Сразу заметим, что под идеей вычисляемой дискретности мы не имеем в виду смутные взгляды воротил мысли из далёкого прошлого. Концепция атомизма древнегреческого философа Демокрита столь же похожа на «монады» Лейбница, сколько аверроизм  на «дуализм» Декарта.


Механическая и цифровая парадигма развивались параллельно, но с временным лагом: по темпу распространения первая значительно опережала вторую.

Поэтому тогда, когда Рене Декарт и Исаак Ньютон предложили уже более-менее проработанное механическое толкование, соответственно, мозга и Вселенной, их современник, другой выдающийся учёный, Готфрид Лейбниц фактически заложил основы принципиально иного, универсального, ответа на фундаментальные вопросы о мироздании, о жизни, о природе бытия и о разуме.


Универсализм  характерная черта творчества Лейбница, профессионального математика и мыслителя с чрезвычайно широким кругозором. В какую бы область познания ни обращался его беспокойный и могучий ум, всюду он стремился найти общий закон.

В математике, независимо от Ньютона, он изобрёл дифференциальное исчисление. В физике, полемизируя с Декартом, дал верную интерпретацию кинетической энергии. В лингвистике пробовал соорудить всеобщий язык, назвав его «универсальной характеристикой». В философии выдумал «монады», которые суть мельчайшие, наделенные духом, свойства бытия.


В каждом случае просматривалась одна и та же мысль: непрерывное движение бесконечно малых величин, подчиненных закону необходимости. Это и есть прообраз идеи вычисляемой дискретности.


Разгадка «загадки атомизма Лейбница», возможно, содержится в его интересе к химии, где становились популярными корпускулярные идеи.23 Но, скорее всего, дело всё в той же математике.

Дифференцирование  развитие идеи числа как отношения величин. Как и Декарт (см. главу 3), Лейбниц, разъясняя суть нового метода исчисления, прибегал к геометрической метафоре: кривизна объекта (например, наклон касательной в данной точке параболы) на данном отрезке определяется отношением приращения значения функции к приращению аргумента: dy/dx.

Сейчас такое отношение принято называть пределом (при условии, что аргумент стремится к нулю).61


Эта математическая истина преобразовалась у Лейбница, по выражению историка науки Мартина Дэвиса, в мечту о создании всеобщего закона, который позволил бы сконструировать универсальный язык и универсальную вычислительную машину. Она могла бы, скажем, работать на основе бинарной арифметики, которой математик в 1703 году посвятил специальную работу.33


Не вдаваясь в тонкости мировоззрения Лейбница, вряд ли будет натяжкой сопоставить придуманные им «монады» с разумным и активным «субъектом» в понимании Гегеля, а, значит, увидеть в работах великого математика попытку возвести логику в ранг главной науки.

Ведь математическая логика в этом случае выступает как один из инструментов самопознания абсолютного духа, которое Гегель поместил в рамки строгой (в философском смысле) диалектики.5


Тогда дискретность, по Лейбницу, есть универсальный принцип, в соответствие с которым развивается «предуготовленная гармония».

Непрекращающееся движение материи  это влияние друг на друга микроскопических носителей (поэтому не принимается декартова идея о протяженной субстанции), которое осуществляется прямо, без посредничества эфира или пустоты (поэтому неприемлема ньютонова дальнодействующая гравитация), и составляет видимые нам сложные агрегаты и разнообразные феномены.

Назад Дальше