АпоС-III активирует липопротеидную липазу крови, расщепляющую ХМ и липопротеиды очень низкой плотности (ЛПОНП). Избыток свободного ХС в клетках может эстерифицироваться свободными жирными кислотами и далее сохраняться в клетке в виде липидных капель. С помощью специализированных белковых транспортеров ХС-эстеры далее переносятся в печень, вступают в связь с апопротеинами или выделяются с желчью.
В печеночных клетках ХС включается в состав ЛПОНП, которые, поступая в кровь, подвергаются воздействию липопротеидной липазы. В результате липолиза образуются «осколки» ЛПОНП ремнанты. Примерно 50 % ремнантов вновь захватываются печеночными апоВ/Е-рецепторами (они же рецепторы ЛПНП), остальные ремнанты обогащаются ХС и превращаются в ЛПНП, предназначенные для снабжения периферических органов и тканей холестерином, поскольку в нем нуждаются все клетки.
Небольшая часть ЛПНП, а возможно и липопротеиды других классов, способны захватываться клетками и нерецепторным путем, но этот механизм пока остается нераскрытым.
В печеночных клетках ХС включается в состав ЛПОНП, которые, поступая в кровь, подвергаются воздействию липопротеидной липазы. В результате липолиза образуются «осколки» ЛПОНП ремнанты. Примерно 50 % ремнантов вновь захватываются печеночными апоВ/Е-рецепторами (они же рецепторы ЛПНП), остальные ремнанты обогащаются ХС и превращаются в ЛПНП, предназначенные для снабжения периферических органов и тканей холестерином, поскольку в нем нуждаются все клетки.
Небольшая часть ЛПНП, а возможно и липопротеиды других классов, способны захватываться клетками и нерецепторным путем, но этот механизм пока остается нераскрытым.
В зависимости от размера липопротеидных частиц и содержащихся в них компонентов они дифференцируются на классы. Различают самые крупные липопротеидные частицы, имеющие наименьшую плотность (они синтезируются в кишечной стенке), хиломикроны (ХМ), далее следуют липопротеиды очень низкой плотности, затем липопротеиды низкой плотности, липопротеиды промежуточной плотности (ЛППП) и липопротеиды высокой плотности.
Главные переносчики ХС ЛПНП (70 %) и ЛПВП. Наиболее насыщены холестерином ЛПНП.
Разделение липопротеидов на классы, перечисленные выше, впервые было проведено с помощью ультрацентрифугирования в специальном растворе определенной плотности (Gofman J. [et al.], 1949). Это разделение основано на разной скорости флотации липопротеидов (ЛП) в указанных условиях, что и позволило разделить их таким образом.
Многочисленными исследованиями установлено, что наибольшей атерогенностью обладают ЛПНП, в числе которых особо отмечают мелкие плотные субфракции (Рагино Ю. И., 2004). У этих ЛПНП устойчивость к быстрому окислению снижена, что способствует их модификации, а значит, увеличивает их атерогенность.
На гетерогенность ЛПНП впервые указал R. Krauss (1995), который дифференцирует несколько субклассов этих частиц в зависимости от их размеров и плотности, что отражается на способностях к модификации и к отложению в сосудистую стенку.
В руководстве D. Betteridge & J. Morrell (2003), в книге В. О. Константинова (2006) представлена наглядная схема, демонстрирующая отличие четырех субклассов ЛПНП по диаметру и плотности, а также разницу между содержанием четырех субфракций ЛПНП в плазме крови здоровых женщин, здоровых мужчин и мужчин с ИБС. В соответствии с этой схемой, ЛПНП наибольшего диаметра в основном свойственны здоровым женщинам, ЛПНП среднего диаметра здоровым мужчинам, а ЛПНП наименьшего диаметра в самой высокой концентрации встречаются в плазме крови больных ИБС.
По сравнению с ЛПНП, ЛПОНП менее атерогенны; но их тоже разделяют на частицы с более мелким и более крупным диаметром. Мелкие ЛПОНП во многом способны вести себя так же, как и ЛПНП, то есть после различного рода модификаций они тоже могут захватываться макрофагами и проникать в их составе во внутреннюю оболочку артерий эластического типа. Самые крупные ЛПОНП не обладают атерогенностью, но в процессе обмена они расщепляются на ремнанты, которые в дальнейшем тоже могут стать субстратом для образования атеросклеротических бляшек.
Количество белка в ЛПНП-частицах остается постоянным, количество же ХС в них может широко варьировать. Так, при семейной ГХС отношение ХС/белок высокое, при ГТГ это соотношение значительно ниже (Thompson G., Wilson P., 1992).
Количество ЛПНП-частиц более точно отражает концентрация апоВ, а не содержание ХС ЛПНП. Описана даже такая форма нарушения липидного состава крови, как гиперапобеталипопротеинемия с эндогенной ГТГ и атеросклерозом (Sniderman А. [et al.], 1982).
Полагают, что концентрация апоВ-частиц в плазме более информативна для прогноза ИБС, чем концентрация ХС ЛПНП.
Антиатерогенными свойствами характеризуются лишь ЛПВП, что обусловлено их способностью забирать избыток ХС с клеточных мембран и передавать его печеночным клеткам, которые могут выделять ХС с желчью или метаболизировать его.
ЛПВП способны отбирать ХС (возможно, и ТГ) от ХМ и ЛПОНП и оказывать антиоксидантное действие, они активируют синтез оксида азота в клетках эндотелия и вызывают таким образом сосудорасширяющий эффект (Климов А. Н., 2006).
В ряду липопротеидов отдельное место занимают липопротеиды (а). В их состав прежде всего входит апопротеин (а) высокогликолизированный (гликированный) полипептид (Климов А. Н., Никульчева Н. Г., 1995). Повышение концентрации ЛП (а) в плазме крови ассоциируют с наличием атеросклероза и его быстрым прогрессированием. Предполагают, что аполипопротеины (а) вступают в связь с аполипопротеинами В, входящими в состав ЛПНП, и задерживают их деградацию рецепторами ЛПНП, т. е. перекрывают наиболее эффективный и физиологичный путь регуляции уровня этих соединений в крови. Это приводит к задержке ЛПНП в циркулирующей крови и повышает их плазменную концентрацию с вытекающими отсюда последствиями.
Установлен ген, кодирующий продукцию апопротеина (а), который локализуется в 6-й хромосоме. В настоящее время апопротеин (а) считают самостоятельным (независимым) фактором риска ИБС.
Исключительное значение для современного понимания обмена липидов и ЛП в организме сыграли работы нобелевских лауреатов J. Goldstein and M. Brown (1974, 1975, 1977). В этих работах впервые были описаны клеточные рецепторы к апоВ (и к апоЕ) рецепторы ЛПНП, благодаря которым осуществляется основной захват ЛПНП из плазмы крови. Эти же исследования помогли понять природу самой распространенной семейной формы гиперхолестеринемии (ГХС), сущность которой заключается в мутации гена, кодирующего синтез клеточных рецепторов ЛПНП в печеночных и других соматических клетках.
Результатом такой гетерозиготной доминантной мутации может быть два типа нарушений: 1) количество рецепторов ЛПНП может снизиться до 50 % по отношению к должному, следствием чего будет развитие рецептор-негативной СГХС; 2) синтез рецепторов нарушается не количественно, а качественно, т. е. образуются функционально неполноценные рецепторы ЛПНП, которые способны связывать лишь 10 % ЛПНП по сравнению с нормой, в результате чего разовьется рецептор-дефективная СГХС (Константинов В. О., Либерман И. С., 2006).
Ген рецептора ЛПНП состоит из структурных единиц доменов, у каждого из которых есть своя «специализация»: контроль связывания ЛПНП (292 аминокислоты), эндоцитоз (400 аминокислот), транспортировка комплекса «рецептор ЛПНП ЛПНП» в эндоплазматический ретикулум и к органоидам клетки (58 аминокислот), диссоциация этого комплекса (22 аминокислоты), возврат рецептора ЛПНП на поверхность клетки в окаймленные ямки (50 аминокислот).
Немодифицированные ЛПНП, т. е. ЛПНП, не подвергшиеся перекисному окислению (или изменениям иного типа), после захвата апоВ/Е-рецепторами (рецепторами ЛПНП) подвергаются в клетке дальнейшим превращениям.
Процесс захвата ЛПНП В/Е-рецепторами печеночных клеток из плазмы крови, насыщение гепатоцитов холестерином и синтез ХС в печени тесно взаимосвязаны. При достаточном накоплении ХС в гепатоцитах в физиологических условиях транскрипция специализированной РНК, которая контролирует синтез рецепторов ЛПНП, подавляется, число рецепторов ЛПНП уменьшается, захват ХС ЛПНП затормаживается. Кроме того, при достаточном содержании ХС в печеночных клетках обычно уменьшается активность ключевого фермента синтеза холестерина ГМГ-КоА-редуктазы, что снижает внутриклеточную выработку ХС, образование ЛПОНП, а значит, и ЛПНП (Мандельштам М. Ю., 2003).
Патогенез типичной семейной формы ГХС заключается в том, что из-за мутации гена, отвечающего за синтез рецептора ЛПНП, количество или функция этих рецепторов в печеночных клетках становятся недостаточными, захват ХС ЛПНП из крови уменьшается, плазменный уровень ХС ЛПНП нарастает. В то же самое время печеночные клетки испытывают дефицит ХС, что включает механизм усиленного синтеза ХС с гиперпродукцией ЛПОНП, которые поступают в циркуляцию и в конечном итоге приводят к еще большему нарастанию уровня ХС (ХС ЛПНП) крови.
В 70 80-е годы XX столетия (Brown M. [et al.], 1979; Brown M., Goldstein J. [et al.], 1979; Brown M. [et al.], 1980) была описана возможность захвата избытка ЛПНП клетками ретикуло-эндотелиальной системы (РЭС) посредством скэвенджер-рецепторов (SR). Так как активность этих рецепторов не регулируется содержанием ХС в клетке, то поглощение ЛПНП клетками РЭС может протекать практически бесконтрольно (Денисенко А. Д., 2006). В основном этот путь утилизации ЛП предназначен для ЛПНП-частиц, подвергшихся модификации перекисному окислению или другим изменениям под действием свободных радикалов, перекисей и других метаболитов. Содержащийся в ЛПНП свободный ХС при этом эстерифицируется, а макрофаги, накапливая эстерифицированный ХС (ЭХС), трансформируются в пенистые клетки (Климов А. Н., Никульчева Н. Г., 1995).
Липопротеиды, не подвергшиеся модификации, по мере потребностей клетки захватываются из циркулирующей крови дозированно, описанными выше специализированными клеточными апоВи апоЕ-рецепторами, расположенными в гепатоцитах и других соматических клетках, при этом их внутриклеточное расщепление не сопровождается накоплением холестерин-эстеров.
Таким представляется процесс ауторегуляции обмена ХС на данном этапе знаний.
При наличии ГХС и увеличении концентрации неизмененных ЛПНП плазмы всегда нарастает и содержание модифицированных ЛПНП.