По какому принципу работает 3D-принтер? Откуда он находит материалы для создания вещей?
Стоп, вы же не думаете, что он создает предметы из воздуха?
Есть разные виды таких принтеров в зависимости от применяемых технологий и материалов.
Во-первых, лазерная стереолитография. Здесь в качестве исходного материала для прототипирования используется фотополимер в жидком агрегатном состоянии. Лазерный луч формирует на поверхности жидкости образ слоя будущего объекта. Затем погружается внутрь фотополимера на один слой. Соприкасаясь с лазерным лучом, исходный материал затвердевает. А лазер компонует следующий слой и продолжает свое погружение.
Стоп, вы же не думаете, что он создает предметы из воздуха?
Есть разные виды таких принтеров в зависимости от применяемых технологий и материалов.
Во-первых, лазерная стереолитография. Здесь в качестве исходного материала для прототипирования используется фотополимер в жидком агрегатном состоянии. Лазерный луч формирует на поверхности жидкости образ слоя будущего объекта. Затем погружается внутрь фотополимера на один слой. Соприкасаясь с лазерным лучом, исходный материал затвердевает. А лазер компонует следующий слой и продолжает свое погружение.
Во-вторых, селективное лазерное спекание. Формирование новой модели происходит из любого порошкообразного материала, подверженного плавлению под воздействием лазерного луча (металл, пластик и тому подобное). На печатную платформу распыляется равномерный слой исходного порошка, который превращается в спекшийся твердый материал с помощью лазерного излучения. Далее подвижное основание уходит вниз на толщину одного слоя, и операция повторяется вновь нанесение порошка, спекание, опускание основы. Сам процесс плавления протекает в среде без кислорода, что позволяет избежать окисления полученного изделия.
В-третьих, электронно-лучевая плавка. Это технология, являющаяся модификацией предыдущей. Позволяет получать прототипы из металлического порошка за счет его послойного плавления. Плавка расходного материала происходит в вакууме с помощью электронного луча. Модели, «напечатанные» по такой технологии, получаются более прочными и долговечными.
В-четвертых, моделирование методом наплавления. В данной технологии прототип создается также из любого плавкого материала (воск, пластик, металл и так далее). Расходник предварительно поступает в специальную экструзионную головку, в которой материал плавится и в виде тонкой проволоки выдавливается на холодную рабочую плоскость. Большая разница температур способствует быстрому застыванию слоя нового объекта. После полного затвердевания первого контура головка наносит на платформу следующий слой.
В-пятых, изготовление объектов с использованием ламинирования. В этой технологии модель изготавливается из тонких слоев полимерной пленки. Предварительно каждый слой будущего изделия вырезается из рабочего материала лазером или механическим резаком. Готовые формы слоев размещаются в установленном порядке и склеиваются. Послойное соединение может происходить разными способами при помощи местного нагрева, спрессовкой под давлением или обычным химическим склеиванием.
В-шестых, полиструйная технология. Принцип работы этих 3D-принтеров похож на стереолитографию (SLA), так как модель создается из фоточувствительной смолы. Полимерная смола предварительно расплавляется и поступает в струйную головку. Головка, перемещаясь вдоль горизонтальной оси, напыляет расплавленную смолу на рабочую плоскость. Толщина такого слоя составляет всего 16 микрон, что в пять раз меньше, чем толщина слоя при стереолитографии. Следующие за головкой УФ-лампы ускоряют затвердевание полимера. Особо сложные модели печатаются с добавлением материала поддержки в виде геля, который удаляется после окончания работы при помощи обычной воды.
Потом, моделирование методом напыления с последующим фрезерованием слоя. В этой технологии 3D-печати также используется два вида материалов модельный и материал поддержки. Печатающая головка одновременно распыляет оба типа «расходников». Затем специальная фрезеровальная головка производит охлаждение распыленного слоя и его механическую обработку. Технология DODJet позволяет строить высокоточные модели с абсолютно гладкой поверхностью. Так как распыление рабочего слоя происходит за счет механически движущейся головки, то скорость изготовления прототипа во многом зависит от сложности печатной модели.
Наконец, контурное изготовление. Это строительная технология, и ее используют не 3D-принтеры. Устройство для печати похоже на козловой кран, у которого вместо многотонного крюка находится распыляющая бетонную смесь головка со встроенными пневматическими формирователями поверхностей. Мгновенно застывающий бетонный раствор слой за слоем наносится на основу дома. Стены вместе с проемами, вентиляционными отверстиями, дымоходами в прямом смысле этого слова растут на глазах. На возведение полой «коробки» одного коттеджа площадью 100 метров квадратных уходит примерно восемь часов непрерывной работы.
Что значат беспилотные автомобили для будущего автомобилей? Превратятся ли обычные автомобили в предмет роскоши?
Я всегда считал вождение автомобиля творческим занятием, но даже мне приходится признать: роботы скоро научатся управлять наземными транспортными средствами лучше и безопаснее людей. Все технологии уже существуют и активно тестируются, довести их до совершенства дело нескольких десятков лет. И рано или поздно в каждой стране настанет момент, когда садиться за руль человеку на дорогах общего пользования будет запрещено, поскольку он просто не сможет без аварий управлять машиной в бессветофорном роботизированном потоке.
Когда мы откажемся от настольных компьютеров?
Несмотря на то что прогресс неустанно идет вперед и все устройства, используемые нами, постоянно претерпевают изменения, речи о прекращении использования настольных ПК в данное время нет. Нет веских причин говорить о снижении их популярности. На самом деле просто произошел резкий рост популярности других устройств, таких как смартфоны и планшеты, что сделало настольные компьютеры менее распространенными по сравнению с этими двумя категориями. Настольные компьютеры сохраняют популярность из-за их высоких характеристик и возможности несложного улучшения этих самых характеристик путем замены каких-то определенных комплектующих (легко опровергается, если вы проведете исследование того, какой процент обладателей настольных компьютеров заменял их составные части). Это, несомненно, важное свойство, однако оно не является определяющим в данном вопросе.
Настольные ПК это, по сути, первый по хронологии вид персональных компьютеров. В два раза позже стали появляться ноутбуки, которые сначала «оттянули» на себя лишь ту часть пользователей, которая не могла пользоваться стационарными компьютерами из-за их низкой мобильности. В современном мире ноутбуки успешно конкурируют с настольными ПК по всем параметрам, кроме одного, но очень важного удобства использования органов управления. Использование стационарного компьютера можно сделать максимально комфортным для оператора, при этом имея в данный момент и приятный бонус в виде высоких характеристик. Из-за постоянного компромисса между размерами и параметрами ноутбуки ограничивают пользователя: плоская и плотно скомпонованная клавиатура, тачпад вместо мыши и т. д. Большинство использует на ноутбуке подключаемую мышь, некоторые подключают внешнюю клавиатуру. Экран ноутбука обычно также сравнительно скромных размеров, при этом он расположен гораздо ниже уровня глаз пользователя, что по современным нормам считается вредным из-за неудобного положения головы. Таким образом, если мы подключим к ноутбуку внешние клавиатуру и мышь, устранив таким образом минусы плотной компоновки, и подключим все это к монитору, то получим, по сути, стационарный компьютер. То же верно сейчас для планшетов и смартфонов. Тут стоит заметить, что популярность концепции стационара почти не привязана к виду системного блока, который некоторые до сих пор называют «процессором». Он может быть выполнен в виде «мини-тауэр» (малых размеров) или любом другом, вплоть до использования ноутбука или планшета и смартфона. Если при этом характеристики (цена, мощность, возможность подключения периферии) для конечного потребителя не теряются, то такое составное устройство окажется в итоге стационарным компьютером.
Рассмотрим гипотетическую ситуацию: завтра отечественная фирма «Эльбрус технолоджис» приступает к производству системного блока «Персональный спутник», размером 10 × 10 см и имеющего характеристики в два раза более высокие, чем ваш любимый домашний настольный компьютер (условно возьмем 3,3 ГГц, 8 ядер, 8 ГБ оперативной памяти, 2 ГБ видеопамяти и 2 ТБ жесткий диск). Устройство работает с любой операционной системой. При этом компанией разработан универсальный разъем, к которому с помощью соответствующего переходника можно будет подключить любую периферию (старую или новую, неважно). Любые переходники вы можете заказать себе в комплект бесплатно + компания ничем не ограничена и может выпускать и продавать эти устройства хоть миллиардными тиражами, доставляя товар прямо к вашей постельке. Совокупная стоимость этого «чуда» составляет 1 российский рубль (доллар, евро, зайчик неважно).
Этот пример не имеет ничего общего с реальностью, он приведен просто для того, чтобы показать, что сам по себе «привычный системный блок» не является основой концепции настольного компьютера, а причиной того, что они «такие, какие есть», являются высокая стоимость, сложность замены и так далее (барьеры). При таком сценарии пройдет около месяца, прежде чем порядка 8090 % системных блоков персональных компьютеров окажутся заменены на наше чудо-устройство. Останутся раритетные и эксклюзивные системные блоки, блоки с лучшими параметрами + часть людей просто не захочет заниматься заменой.
Сейчас использование стационара обязательно почти для любых офисных работников, а также для большинства людей, которым приходится много печатать или работать (инженеры, проектировщики, художники и другие) на компьютере, это связано со специализированной периферией и программными продуктами.