100 великих событий XX века - Непомнящий Николай Николаевич 6 стр.


Третья, поистине замечательная работа Эйнштейна, опубликованная все в том же 1905 г., – специальная теория относительности, революционизировавшая все области физики. В то время большинство физиков полагало, что световые волны распространяются в эфире – загадочном веществе, которое, как принято было думать, заполняет всю Вселенную. Однако обнаружить эфир экспериментально никому не удавалось. Поставленный в 1887 г. Альбертом А. Майкельсоном и Эдвардом Морли эксперимент по обнаружению различия в скорости света, распространяющегося в гипотетическом эфире вдоль и поперек направления движения Земли, дал отрицательный результат. Если бы эфир был носителем света, который распространяется по нему в виде возмущения, как звук по воздуху, то скорость эфира должна была бы прибавляться к наблюдаемой скорости света или вычитаться из нее, подобно тому как река влияет, с точки зрения стоящего на берегу наблюдателя, на скорость лодки, идущей на веслах по течению или против течения.

В основу специальной теории относительности Эйнштейна были положены два универсальных допущения, делавших излишней гипотезу о существовании эфира: все законы физики одинаково применимы для любых двух наблюдателей, независимо от того, как они движутся относительно друг друга, свет всегда распространяется в свободном пространстве с одной и той же скоростью, независимо от движения его источника.

Выводы, сделанные из этих допущений, изменили представления о пространстве и времени: ни один материальный объект не может двигаться быстрее света; с точки зрения стационарного наблюдателя, размеры движущегося объекта сокращаются в направлении движения, а масса объекта возрастает; чтобы скорость света была одинаковой для движущегося и покоящегося наблюдателей, движущиеся часы должны идти медленнее. Даже понятие стационарности подлежит тщательному пересмотру. Движение или покой определяются всегда относительно некоего наблюдателя. Наблюдатель, едущий верхом на движущемся объекте, неподвижен относительно данного объекта, но может двигаться относительно какого-либо другого наблюдателя. Поскольку время становится такой же относительной переменной, как и пространственные координаты x, y, z, понятие одновременности также становится относительным. Два события, кажущихся одновременными одному наблюдателю, могут быть разделены во времени с точки зрения другого. Из других выводов, к которым приводит специальная теория относительности, заслуживает внимание эквивалентность массы и энергии. Масса m представляет собой своего рода «замороженную» энергию E, с которой связана соотношением E = mc2, где c – скорость света. Таким образом, испускание фотонов света происходит ценой уменьшения массы источника.

Релятивистские эффекты, как правило, пренебрежимо малые при обычных скоростях, становятся значительными только при больших скоростях, характерных для атомных и субатомных частиц. Потеря массы, связанная с испусканием света, чрезвычайно мала и обычно не поддается измерению даже с помощью самых чувствительных химических весов. Однако специальная теория относительности позволила объяснить такие особенности процессов, происходящих в атомной и ядерной физике, которые до того оставались непонятными.

Почти через сорок лет после создания теории относительности физики, работавшие над созданием атомной бомбы, сумели вычислить количество выделяющейся при ее взрыве энергии на основе дефекта (уменьшения) массы при расщеплении ядер урана.

После публикации статей в 1905 г. к Эйнштейну пришло академическое признание. В 1909 г. он стал адъюнкт-профессором Цюрихского университета, в следующем году профессором Немецкого университета в Праге, а в 1912 г. – цюрихского Федерального технологического института. В 1914 г. Эйнштейн был приглашен в Германию на должность профессора Берлинского университета и одновременно директора Физического института кайзера Вильгельма (ныне Институт Макса Планка). Германское подданство Эйнштейна было восстановлено, и он был избран членом Прусской академии наук.

После напряженных усилий Эйнштейну удалось в 1915 г. создать общую теорию относительности, выходившую далеко за рамки специальной теории, в которой движения должны быть равномерными, а относительные скорости постоянными. Общая теория относительности охватывала все возможные движения, в том числе и ускоренные (т. е. происходящие с переменной скоростью). Господствовавшая ранее механика, берущая начало из работ Исаака Ньютона (XVII–XVIII вв.), становилась частным случаем, удобным для описания движения при относительно малых скоростях. Эйнштейну пришлось заменить многие из введенных Ньютоном понятий. Такие аспекты ньютоновской механики, как, например, отождествление гравитационной и инертной масс, вызывали у него беспокойство. По Ньютону, тела притягивают друг друга, даже если их разделяют огромные расстояния, причем сила притяжения, или гравитация, распространяется мгновенно. Гравитационная масса служит мерой силы притяжения. Что же касается движения тела под действием этой силы, то оно определяется инертной массой тела, которая характеризует способность тела ускоряться под действием данной силы. Эйнштейна заинтересовало, почему эти две массы совпадают.

Он произвел так называемый «мысленный эксперимент». Допустим, один наблюдатель находится в кабине лифта небоскреба, другой снаружи. Внезапно канат, поддерживающий кабину, обрывается, и она свободно падает. Экспериментатор в кабине проводит следующий опыт: вынимает из своего кармана платок и часы и выпускает их из рук. Относительно небоскреба падает экспериментатор, часы и платок.

Посмотрим, каким путем оба наблюдателя, внутренний и внешний, описывают то, что происходит в лифте.

Внутренний наблюдатель-экспериментатор. Пол лифта медленно начинает уходить из-под ног. Часы с платком медленно движутся вверх относительно экспериментатора. Платок движется вверх быстрее, чем часы. Экспериментатор делает вывод: все тела к земле движутся с разным ускорением. Самое большее ускорение у лифта, затем у него самого, потом следуют часы, и медленнее всех падает платок. Вывод – система неинерциальная (в инерциальной системе тело, на которое не действуют никакие силы, находится в покое или движется равномерно и прямолинейно).

Внешний наблюдатель. Все четыре тела: лифт, экспериментатор, часы и платок падают с различным ускорением к земле. Его вывод также совпадает с мнением внутреннего наблюдателя – система неинерциальная.

Внутренний и внешний наблюдатель Эйнштейна рассуждает иначе: «Внешний наблюдатель замечает движение лифта и всех тел в нем, и находит его соответствующим закону тяготения Ньютона. Для него движение является не равномерным, а ускоренным, вследствие поля тяготения Земли.

Однако физик рожденный и воспитанный в лифте, рассуждал бы совершенно иначе. Он был бы уверен в том, что обладает инерциальной системой, и относил бы все законы природы к своему лифту, заявляя с уверенностью, что законы принимают особенно простую форму в его системе координат. Для него было бы естественным считать свой лифт покоящимся и свою систему координат – инерциальной.

Один из друзей Эйнштейна заметил по поводу такой ситуации, что человек в лифте не мог бы отличить, находится ли он в гравитационном поле или движется с постоянным ускорением. Эйнштейновский принцип эквивалентности, утверждающий, что гравитационные и инерциальные эффекты неотличимы, объяснил совпадение гравитационной и инертной массы в механике Ньютона. Затем Эйнштейн расширил картину, распространив ее на свет. Если луч света пересекает кабину лифта «горизонтально», в то время как лифт падает, то выходное отверстие находится на большем расстоянии от пола, чем входное, так как за то время, которое требуется лучу, чтобы пройти от стенки к стенке, кабина лифта успевает продвинуться на какое-то расстояние. Наблюдатель в лифте увидел бы, что световой луч искривился. Для Эйнштейна это означало, что в реальном мире лучи света искривляются, когда проходят на достаточно малом расстоянии от массивного тела.

Общая теория относительности Эйнштейна заменила ньютоновскую теорию гравитационного притяжения тел пространственно-временным математическим описанием того, как массивные тела влияют на характеристики пространства вокруг себя. Согласно этой точке зрения тела не притягивают друг друга, а изменяют геометрию пространства-времени, которая и определяет движение проходящих через него тел.

Но в тот период Эйнштейн работал не только над теорией относительности. Например, в 1916 г. он ввел в квантовую теорию понятие индуцированного излучения. В 1913 г. Нильс Бор разработал модель атома, в которой электроны вращаются вокруг центрального ядра (открытого несколькими годами ранее Эрнестом Резерфордом) по орбитам, удовлетворяющим определенным квантовым условиям. Согласно модели Бора, атом испускает излучение, когда электроны, перешедшие в результате возбуждения на более высокий уровень, возвращаются на более низкий. Разность энергии между уровнями равна энергии, поглощаемой или испускаемой фотонами. Возвращение возбужденных электронов на более низкие энергетические уровни представляет собой случайный процесс. Эйнштейн предположил, что при определенных условиях электроны в результате возбуждения могут перейти на определенный энергетический уровень, затем, подобно лавине, возвратиться на более низкий. Этот процесс лежит в основе действия современных лазеров.

Хотя и специальная, и общая теории относительности были слишком революционны, чтобы снискать немедленное признание, они вскоре получили ряд подтверждений. Одним из первых было объяснение прецессии орбиты Меркурия, которую не удавалось полностью понять в рамках ньютоновской механики. Во время полного солнечного затмения в 1919 г. астрономам удалось наблюдать звезду, скрытую за кромкой Солнца. Это свидетельствовало о том, что лучи света искривляются под действием гравитационного поля Солнца. Всемирная слава пришла к Эйнштейну, когда сообщения о наблюдении солнечного затмения 1919 г. облетели весь мир. Относительность стала привычным словом.

В 1920 г. Эйнштейн стал приглашенным профессором Лейденского университета. Однако в самой Германии он подвергался нападкам из-за своих антимилитаристских взглядов и революционных физических теорий, названных некоторыми его коллегами «еврейской физикой».

В 1922 г. Эйнштейну была вручена Нобелевская премия по физике 1921 г. «за заслуги перед теоретической физикой, и особенно за открытие закона фотоэлектрического эффекта».

В то время как большинство физиков начало склоняться к принятию квантовой теории, Эйнштейна все более не удовлетворяли следствия, к которым она приводила. В 1927 г. он выразил свое несогласие со статистической интерпретацией квантовой механики, предложенной Нильсом Бором и Максом Борном. Согласно этой интерпретации, принцип причинно-следственной связи неприменим к субатомным явлениям. Эйнштейн был глубоко убежден, что статистика является не более чем средством и что фундаментальная физическая теория не может быть статистической по своему характеру. По словам Эйнштейна, «Бог не играет в кости» со Вселенной.

До конца жизни он стремился построить единую теорию поля, которая могла бы выводить квантовые явления из релятивистского описания природы. Осуществить эти замыслы Эйнштейну так и не удалось.

1906

Землетрясение в Сан-Франциско

В прошлом столетии природа уже дважды демонстрировала свою мощь на востоке США, доказывая, что она гораздо сильнее самого крепкого бетона и стали. Так было в 1906 и 1989 гг.


Но эти два землетрясения, повергшие Сан-Франциско в хаос, являются всего лишь предвестниками будущей катастрофы, которая может буквально в ближайшее время сравнять с землей этот город. Это не предсказание Нострадамуса. Дело в том, что само расположение Сан-Франциско говорит о том, что в один прекрасный день он будет разрушен и исчезнет в огромных трещинах земной коры, сохранившись только в людской памяти, на фотографиях и открытках.

Городу угрожает гибелью гигантский древний тектонический разлом. Названный в честь святого Андреаса, он представляет собой 650-мильную трещину в земной коре, там, где тихоокеанская плита постепенно заходит под сушу в районе штата Калифорния.

18 апреля 1906 года произошло первое сильное землетрясение, опустошившее Сан-Франциско. Почувствовав первые удары стихии, жители города «золотой лихорадки», который к тому времени превратился в один из самых процветающих городов Западного побережья, встревожились. Толчки следовали один за другим, и было очень странно ощущать, как дрожит под ногами земля, и видеть, как подпрыгивает мебель.


Землетрясение в Сан-Франциско – один из самых больших катаклизмов века


В этот трагический день, когда слуги разбудили газетного магната Уильяма Рэндольфа Херста, отдыхавшего в своих роскошных нью-йоркских апартаментах, и сказали, что его родной Сан-Франциско разрушен подземными толчками и пожарами, он, открыв глаза, ответил: «Не переигрывайте – в Калифорнии часто происходят землетрясения».

Но землетрясение в Сан-Франциско намного превосходило все допустимые предположения. Это был один из самых больших катаклизмов века. Сила подземных толчков составила 8,3 балла по шкале Рихтера. По своей мощности землетрясение превосходило силу одновременно взорванных тридцати ядерных бомб. Под разрушенными зданиями и в пожарах в первые же минуты после подземных толчков погибли восемьсот человек.

Мери Монти, которой в 1906 г. было 4 года, так вспоминала о том трагическом дне: «Меня выбросило из кровати. Стены дома, в котором мы жили, начали дрожать и покрываться трещинами. Мы выбежали на улицу – дорога покрылась буграми, они двигались, вспучиваясь, словно в кипящем котле. Моя мама собрала всех детей, и мы поехали на повозке в горы. Повсюду полыхали пожары. Внезапно возник новый пожар – это лопнул бензопровод, и бензин начал выливаться на улицу».

Землетрясение разрушило водопровод, и пожарные не смогли как следует взяться за дело. Поэтому в районе Телеграф Хилл, где проживали самые богатые в городе семьи итальянских иммигрантов, пожар пытались тушить при помощи десятков тысяч литров вина.

Паникой, охватившей город, воспользовались мародеры. Банды грабителей носились по улицам, опустошая разрушенные магазины и очищая карманы мертвецов, лежавших вдоль водосточных канав. Захваченных на месте преступления бандитов разъяренные жители вешали без суда и следствия на уцелевших фонарных столбах.

Писатель Джек Лондон, делавший репортажи для еженедельного журнала, сообщал: «Сан-Франциско умер! В среду в 5.15 утра произошло землетрясение. Через минуту в небо взметнулись языки пламени. Никто не гасил огонь, люди были не организованы, отсутствовала связь… Словом, все хитроумные системы защиты человека были уничтожены тридцатисекундным движением земной коры».

Трагедия вынудила правительство США вложить деньги в изучение разлома земной коры и в разработку мер, которые позволят предсказать следующее стихийное бедствие.

Хотя ученые и понимают, что бедствие напрямую связано с разломом Святого Андреаса и что земля с западной стороны линии разлома сдвинулась к северу, они пока еще очень мало знают о процессах, которые двигают и сотрясают сушу.

Гарри Филдинг Рейд, геолог из Пенсильвании, наблюдая колебания заборных столбов и дорожные разрушения, обнаружил, что огромные блоки суши по обе стороны разлома находились в состоянии громадного напряжения задолго до катастрофы. Накопив колоссальную энергию, титанические силы подвинули сушу.

Назад Дальше