Объясняя мир - Стивен Вайнберг 4 стр.


Теорема Пифагора ведет к другому великому открытию о том, что геометрические построения могут привести к соотношениям, которые не могут быть выражены частным от деления целых чисел. Если каждый катет прямоугольного треугольника имеет длину, равную единице (неважно, в каких единицах измерения), то сумма площадей двух квадратов, сторонами которого являются эти катеты, составляет 1² + 1² = 2. Тогда в соответствии с теоремой Пифагора длина гипотенузы должна выражаться числом, квадрат которого равен 2, но легко увидеть, что число, квадрат которого равен 2, не может быть выражено как соотношение целых чисел (см. техническое замечание 5). Доказательство этого дается в Десятой книге «Начал» Евклида. Ранее о нем говорит Аристотель в «Первой аналитике»{22} в качестве примера reductio ad impossibile[3], не давая ссылку на оригинальный источник. Существует легенда о том, что это открытие принадлежит пифагорейцу Гиппасу, который, возможно, родился в городе Метапонте на юге Италии и был изгнан или убит пифагорейцами за разглашение этого открытия.

Сегодня мы можем описать это открытие следующим образом: такие числа, как квадратный корень из двух, являются иррациональными – они не могут быть выражены как отношение целых чисел. Согласно Платону{23}, Феодор Киренский показал, что квадратные корни из 3, 5, 6,…, 15, 17 и т. д. (и вдобавок, хотя Платон этого и не говорит, квадратные корни из всех целых чисел, кроме 1, 4, 9, 16 и т. д., которые являются квадратами целых чисел) иррациональны в том же смысле. Но древние греки не выражали эту мысль таким образом. Скорее, судя по переводу Платона, они говорили о сторонах квадратов, площадь которых равна 2, 3, 5 и т. д., несоизмеримых единице. У древних греков не было понятия о каких-либо числах, кроме рациональных, поэтому для них такое число, как квадратный корень из двух, могло быть представлено только геометрически, что затрудняло развитие арифметики.

Традиция чистой математики была продолжена в Академии Платона. Говорили, что у ее дверей висело предупреждение, запрещающее вход любому, кто невежествен в геометрии. Сам Платон математиком не был, но с восторгом относился к математикам, отчасти, вероятно, потому, что во время своего путешествия в Сиракузы, чтобы стать наставником молодого Дионисия II Младшего, встречался с пифагорейцем Архитом Тарентским.

В Академии одним из математиков, который оказал огромное влияние на Платона, был Теэтет Афинский, ставший главным героем одного из диалогов Платона и объектом для обсуждения в другом. Теэтет знаменит открытием пяти правильных многогранников, которые, как мы уже видели, обеспечили основу теории элементов Платона. Доказательство{24} того, что эти тела являются единственно возможными выпуклыми многогранниками, предложено в «Началах» Евклида и приписывается Теэтету, который также внес свой вклад в теорию того, что мы сегодня называем иррациональными числами.

Самым великим эллинским математиком IV в. до н. э. был Евдокс Книдский, ученик Архита и современник Платона. Хотя он прожил большую часть своей жизни в городе Книде, на побережье Малой Азии, Евдокс учился в Академии Платона и позже вернулся туда, чтобы самому стать учителем. От Евдокса не осталось никаких записей, но он известен тем, что решил множество сложных математических задач, например доказал, что объем конуса равен одной трети объема цилиндра с тем же основанием и высотой (я не представляю, как Евдокс мог сделать это, не прибегая к математическому анализу). Его величайшим вкладом в математику стало изобретение метода исчерпывания, при использовании которого теоремы выводились из простых аксиом, не требующих доказательства. Этот же метод использовал Евклид в своих работах. На самом деле многое в «Началах» Евклида может быть отнесено на счет Евдокса.

Хотя открытия Евдокса и пифагорейцев были большим интеллектуальным достижением сами по себе, они оказали неоднозначное влияние на естественные науки. Начнем с того, что дедуктивное изложение в работах математиков, достигшее вершины в «Началах» Евкилида, постоянно повторялось и в работах исследователей – естественников, где такой стиль совершенно неприемлем. Как мы видим, в работах Аристотеля математика привлекается очень мало, но временами его аргументация выглядит как пародия на математическое доказательство, как, например, в дискуссии о движении в «Физике»: «Положим, что тело, обозначенное Α, будет проходить через среду Β в течение времени Γ, а через более тонкую среду Δ – в течение [времени] Ε; если расстояния [проходимые телом] в средах Β и Δ равны, [то Γ и Ε будут] пропорциональны [сопротивлению] препятствующего тела. Пусть, например, Β будет вода, а Δ – воздух…»{25}. Возможно, величайшая древнегреческая работа в области физики – это сочинение Архимеда «О плавающих телах», о чем мы поговорим в главе 4. Оно изложено как математическая работа, где из постулатов выводятся доказательства утверждений. Архимед был достаточно умен, чтобы выбрать подходящие постулаты для своих выводов, но научное исследование честнее представлять как единство дедукции, индукции и предположения.

Однако гораздо более важным, чем вопрос стиля (хотя и связано с ним), является ошибочное желание достичь абсолютной истины при помощи одного лишь чистого разума, на что вдохновляли математики. В своей дискуссии об образовании философа в диалоге «Государство» Платон использовал сократовский аргумент о том, что астрономию нужно изучать таким же способом, как и геометрию. Согласно Сократу, смотреть в небо может быть полезно для развития разума, точно так же как смотреть на геометрические построения полезно для изучения математики, но в обоих случаях настоящее знание приходит только через мысль. «Значит, мы будем изучать астрономию так же, как геометрию, с применением общих положений, а то, что на небе, оставим в стороне…»{26}

Математика – это средство, с помощью которого мы выводим следствия физических законов. Более того, это незаменимый язык, на котором излагаются сами физические законы. Она часто пробуждает новые идеи в области естественных наук, и, в свою очередь, нужды науки часто подталкивают развитие математики. Работа физика-теоретика Эдварда Виттена обеспечила такой громадный прорыв в математике, что в 1990 г. он получил одну из самых высоких наград в области математики – Филдсовскую медаль. Но при этом математика не является естественной наукой. Математика сама по себе, без наблюдений за окружающим миром, не может ничего рассказать о нем. И математические теоремы не могут быть ни подтверждены, ни опровергнуты такими наблюдениями.

Ни в древнем мире, ни даже в начале Нового времени об этом не подозревали. Мы уже видели, что Платон и пифагорейцы воспринимали математические объекты, например, числа или треугольники, как элементарные составляющие природы, и мы еще увидим, как некоторые философы считали вычислительную астрономию частью математики, а не естественной наукой.

Различие между математикой и естественными науками достаточно четко. Для нас остается загадкой, как математические построения, никак не связанные с природой, часто оказываются применимы к физическим теориям. В своей знаменитой статье{27} физик Юджин Вигнер писал о «непостижимой эффективности математики». Но в целом мы никоим образом не смешиваем математические концепции и принципы естественных наук, которые в конечном счете должны быть подтверждены наблюдением за окружающим миром.

Сейчас конфликты между математиками и другими учеными порой возникают из-за вопросов математической строгости. С начала XIX в. чистые математики требовали, чтобы строгость стала основой всего. Определения и допущения должны быть точными, а доказательства проведены с абсолютной достоверностью. Физики более гибки, точность и достоверность требуется им только для того, чтобы избежать серьезных ошибок. В предисловии к своей монографии по квантовой теории полей я признаю, что «в книге есть части, которые читатель, склонный к математике, будет читать со слезами на глазах».

Это вызывает сложности во взаимопонимании. Математики говорили мне, что работы физиков часто кажутся им раздражающе расплывчатыми. Те физики, которым, как и мне самому, нужен продвинутый математический аппарат, часто находят, что стремление математиков к строгости усложняет работу, но не так ценно для самой физики.

Физики, склонные к математике, совершили благородный поступок, формализовав современную физику элементарных частиц – квантовую теорию поля – по строгим математическим канонам, и достигли некоторых интересных результатов. Но за последние полвека в Стандартной модели элементарных частиц не было никакого развития, связанного с достижением более высокого уровня математической строгости.

Греческие математики процветали и после Евклида. В главе 4 мы поговорим о великих достижениях математиков позднего эллинистического периода – Архимеда и Аполлония Пергского.

3. Движение и философия

После Платона размышления греков о природе стали менее поэтическими и более аргументированными. Прежде всего, эти изменения заметны в работах Аристотеля. Аристотель не был ни урожденным афинянином, ни даже ионийцем. Он родился в 384 г. до н. э. в Македонии и переехал в Афины в 367 г. до н. э., чтобы учиться в основанной Платоном Академии. После смерти Платона в 347 г. до н. э. Аристотель уехал из Афин, некоторое время жил на острове Лесбос в Эгейском море и в прибрежном городе Ассос. В 343 г. до н. э. царь Филипп II призвал его обратно в Македонию, чтобы сделать наставником для своего сына, будущего Александра Великого.

Македония возвысилась в греческом мире после того, как армия Филиппа разбила армию Афин и Фив в битве при Херонее в 338 г. до н. э. После смерти Филиппа в 336 г. до н. э. Аристотель вернулся в Афины, где основал свою собственную школу Ликей. Наряду с Академией Платона, Садом Эпикура и Портиком[4] стоиков Ликей был одной из четырех самых великих афинских школ. Он просуществовал несколько веков, вероятно, пока не был закрыт, когда Афины были захвачены римскими войсками под предводительством Суллы в 86 г. до н. э. У Ликея была долгая жизнь, но Академия Платона, действовавшая в том или ином виде до 529 г. н. э., имеет более долгую историю, чем многие ныне существующие европейские университеты.

Дошедшие до нас работы Аристотеля в основном выглядят как заметки для его лекций в Ликее. Они касаются удивительного множества предметов: астрономия, зоология, сновидения, метафизика, логика, этика, риторика, политика, эстетика и то, что обычно переводят как «физика». По мнению одного из современных переводчиков{28}, язык Аристотеля был «выразителен, краток, резок, его аргументы выражены сжато, его мысль глубока», что вовсе не похоже на поэтический стиль Платона. Я должен сознаться, что иногда нахожу Аристотеля таким скучным, каким Платон не бывает, в то же время Аристотель не часто демонстрирует глупость, чего не скажешь о Платоне.

Платон и Аристотель были реалистами, но в разном смысле этого слова. Платон был реалистом в средневековом значении: он верил в реальность абстрактных идей, в частности, в идеальную форму вещей. Он считал, что реально существует идеальная форма сосны, а все отдельно существующие сосны только являются ее неидеальными воплощениями. Идеальные формы неизменны, как этого требовали Парменид и Зенон. Аристотель был реалистом в общепринятом современном смысле: для него категории хотя и были очень интересны, но существовали отдельные вещи, например, отдельные сосны, вполне реальные, а не платоновские отражения идеального.

Чтобы подтвердить свои предположения, Аристотель чаще пользовался доводами разума, а не действовал по наитию. Нельзя не согласиться со специалистом по классической филологии Р. Дж. Ханкинсоном, что «мы не должны упускать из виду тот факт, что Аристотель был человеком своего времени, и для этого времени он был чрезвычайно наблюдательным, прозорливым и передовым»{29}. Как бы то ни было, сквозь все учение Аристотеля проходили принципы, от которых современная наука отказалась на пути своего становления.

Начнем с того, что работы Аристотеля переполнены телеологией: вещи являются тем, что они есть, благодаря целям, которым они служат. В «Физике» мы читаем: «Кроме того, дело одной и той же [науки – познавать] «ради чего» и есть цель, а также [средства], которые для этого имеются. Ведь природа есть цель и “ради чего”…»{30}

То, что Аристотель придает особое значение телеологии, вполне естественно для человека его склада, который интересовался биологией. В Ассосе и на Лесбосе Аристотель изучал морскую биологию, а его отец Никомах был врачом при македонском дворе. Друзья, более сведущие в биологии, чем я, говорят, что описания животных, сделанные Аристотелем, достойны восхищения. Телеология вполне естественна для того, кто, как Аристотель в своем сочинении «О частях животных», изучает сердце или желудок животного – едва ли ему приходится задаваться вопросом, какой цели служат эти органы.

Более того, до работ Дарвина и Уоллеса в XIX в. натуралисты не понимали, что, хотя органы тела служат разным целям, не существует никакой цели, лежащей в основе эволюции. Живые организмы стали тем, чем они стали, благодаря продолжавшемуся миллионы лет естественному отбору из передающихся по наследству вариаций. И, конечно, задолго до Дарвина физики изучали вещество и силу, не задумываясь, какой цели они служат.

Увлечение Аристотеля зоологией, возможно, определило и то, что он особо подчеркивал значение классификации и систематизации, подразделял предметы и понятия на категории. Некоторые из них мы используем до сих пор: например, аристотелевское деление способов управления государством на монархию, аристократию и, хотя и не демократию, но конституционное государственное устройство. Однако многие его классификации бессмысленны. Я могу себе представить, как Аристотель мог бы классифицировать фрукты: все фрукты делятся на три разновидности – яблоки, апельсины и фрукты, которые не являются ни яблоками, ни апельсинами.

Через все работы Аристотеля красной нитью проходит один тип классификации, ставший в дальнейшем препятствием для развития науки. Он настаивал на разделении естественного и искусственного. Вторую книгу «Физики» он начал словами: «Из существующих [предметов] одни существуют по природе, другие – в силу иных причин»{31}. Он считал достойной своего внимания только природу. Возможно, именно это разделение естественного и искусственного не позволяло Аристотелю и его последователям интересоваться экспериментами. Что может быть хорошего в создании искусственной ситуации, когда настоящий интерес вызывают природные явления?

Аристотель не отвергал наблюдения за природными явлениями. Наблюдая временной промежуток между вспышкой молнии и ударом грома и слушая звуки весел, которые опускали в воду гребцы на триреме, плывущей вдали, он сделал вывод о том, что скорость распространения звука в воздухе конечна{32}. Также мы увидим, что Аристотель, удачно используя наблюдения, сделал выводы о форме земного шара и о причине возникновения радуг. Но это были обычные наблюдения природных явлений, а не создание искусственных ситуаций с целью проведения эксперимента.

Назад Дальше