И еще одна особенность процессов во времени. В пространстве нет выделенных направлений: разве можете вы придумать процессы, которые происходят «справа» и не происходят «слева»? Но есть масса процессов, развивающихся во времени только в одном направлении. Например, легко порвать страницу этой книги. Однако попробуйте склеить ее, вернув в первоначальное состояние (что в точности означало бы, что вы запустили процесс разрывания страницы в обратном направлении во времени). Нет, не получится. Если уж вы действительно порвали страницу, то так и останетесь с порванной. Время течет по-разному в направлении будущего и прошлого. Эту однонаправленность часто называют стрелой времени, направленной в будущее, и это название очень ей подходит.
Эти особенности времени хорошо нам знакомы и составляют ткань нашей жизни. Мы не можем переделать прошлое, а воссоздать прошлые события способны только в своей памяти. И нам не дано предугадать, что случится с нами завтра, – мы можем только мечтать, строить планы и составлять расписание на будущее. И если вдруг вы что-то однажды беспечно нарушите, восстановить это уже не получится. Но эти ограничения компенсируются замечательным даром. Мы умеем создавать по-настоящему новые вещи: вчера этой музыки не существовало, а сегодня она есть. Мы можем выбирать судьбу: мое сегодняшнее решение в состоянии изменить течение моей жизни. Наше ощущение времени абсолютно и сосредоточено исключительно на настоящем – это та «точка во времени», в которой мы можем выбирать, действовать и создавать. На самом деле, у нас нет ничего, кроме настоящего: ведь то, что мы знаем про прошлое, основано на памяти, а то, что мы знаем о будущем, – на предположениях. Как сказал великий мастер дзен-буддизма Эйхэй Догэн, «в каждом моменте заключена вся жизнь, весь мир. Задумайтесь сейчас, остается ли какая-то жизнь и мир за границами настоящего момента»[14].
Но есть и другая, практически противоположная точка зрения на то, как устроен мир. Рассмотрим нашу летящую стрелу. Давайте, подойдя к конечной точке первой половины ее траектории, которая завершается «сейчас», зададимся вопросом, есть ли у нее выбор пути, по которому она может лететь дальше. Кажется, что нет: мы довольно хорошо знаем, по какой кривой стрела полетит, и можем довольно точно начертить оставшуюся часть ее траектории. Это значит, что мы можем предсказать ее будущий путь при условии, что мы все знаем о первой половине траектории – путь стрелы, ее скорость и направление движения, плотность воздуха.… возможно, даже возникновение встречных порывов ветра. Нам кажется, что чем больше мы знаем, тем лучше сможем предсказать ее будущий полет.
Если бы мы могли довести эту способность рассчитать траекторию до совершенства, то есть могли бы предсказать путь стрелы с идеальной точностью, то нам удалось бы нарисовать абсолютно достоверную траекторию: пусть мы не смогли бы увидеть будущее, но, во всяком случае, смогли бы узнать, каким оно будет. И этим законам физики подчиняется не только стрела. Нашу судьбу, выпади мы из самолета без парашюта, тоже можно было бы предсказать с полной определенностью. Эти законы применимы в том числе и к нам, даже если их действие понять очень сложно. Мы даже можем сказать, что то, что прямо сейчас мы считаем будущим, уже для нас приготовлено. Чтобы увидеть, как это будущее выглядит, нам придется чуть-чуть погодить, но оно уже нас поджидает. С этой точки зрения, которую мы можем назвать этерналистской, время рассматривается почти так же, как и пространство: то и другое уже раз и навсегда подготовлено. Будущее, точно так же, как прошлое, уже существует. А настоящее – это вид иллюзии, один случайно выбранный из многих момент времени, не имеющий особого значения. Ничего нового не создается, поскольку будущее уже существует. Момент, когда перестанет биться ваше сердце, уже выбран, и вы неуклонно движетесь сквозь пространство-время, прикладывая все силы, чтобы к этому моменту приблизиться.
Действительно ли дело обстоит именно так? Мы не должны сразу отметать это представление только потому, что оно противоречит нашей житейской интуиции в вопросе взаимодействия человеческого сознания и внешнего мира. На страницах моей книги вас ожидает немало встреч с тем, что оказывается верным, хотя и противоречит интуиции.
Но что же мы – с этерналистской точки зрения – делаем, когда собираемся что-то решить, когда мучаемся над тем, какой путь избрать? Почему нам кажется, что мы можем принять и правильное, и ошибочное решение? Почему мы чувствуем сожаление, вину, почему осуждаем? Неужели все это – иллюзии? Но если так, то что тогда вообще реально в этом мире?
Загадка, которую шепотом задает Дзеньё, сложна: «Время – это всё или ничто?»
4. Башня
(Пиза, 1608 год)
Мы, пожалуй, могли бы сказать, что твое путешествие начинается в Пизе. Стоит жаркий, пыльный день, ты карабкаешься вверх по ступеням пизанской башни, а в руках у тебя тяжелый чугунный шар. В тот момент тебя не удивляет, что твой наставник – Галилей – несет гораздо менее тяжелый деревянный шар: идеи, на которые он открыл тебе глаза, настолько увлекательны, что капающий со лба пот и промокшая майка не кажутся чрезмерной платой.
Когда вы добираетесь до верха, Галилей объявляет, что вы оба одновременно должны бросить свои шары вниз. Он спрашивает тебя: «Как ты думаешь, какой шар упадет на землю раньше? Аристотель утверждал, что чугунный шар весом сто фунтов, сброшенный с высоты 100 локтей, упадет на землю еще до того, как деревянный шар весом один фунт пролетит один локоть. Да и судя по твоему потному лбу, чугунный шар притягивается к Земле гораздо сильнее».
На это ты, все еще тяжело дыша, можешь только кивнуть. А Галилей продолжает: «Но рассуждения Аристотеля ошибочны! Подумай как следует. Чугунный шар также гораздо тяжелее сдвинуть – нужно приложить немалое усилие, даже чтобы катить его по земле».
Пока ты обдумываешь услышанное, он продолжает: «Вот и скажи мне, что перевешивает: большее усилие, необходимое, чтобы сдвинуть чугунный шар, или, наоборот, большее притяжение его к земле? Что пересилит? Какой шар в действительности полетит быстрее? Я совершенно уверен, что на самом деле Аристотель никогда не проверял свое утверждение».
Ты говоришь, что не знаешь. Галилей кивает и дает знак начать эксперимент. Но даже когда ты видишь результат своими глазами, в него нелегко поверить: оба шара ударяются о землю точно в одно и то же время, поднимая далеко внизу облака пыли (хотя и разного размера). Ты поворачиваешься к внимательно наблюдающему за тобой Галилею. «Как такое может быть, – спрашивает он вкрадчиво, – что два таких разных предмета падают совершенно одинаково?»
Я… который проделал этот опыт, могу утверждать, что при падении на землю с высоты в 200 локтей пушечное ядро весом в сто, двести или более фунтов ни на мгновение не опередит мушкетную пулю весом в полфунта.
Галилео в роли Сагредо в «Диалоге о двух главнейших системах мира»[15]Когда в коане «ОТПЛЫТИЕ» мы размышляли о движении и времени, то решили, что утверждения об абсолютном равномерном движении бессодержательны. А вот относительное движение и изменения движения представляются вполне реальными. Из них, как из кирпичиков, строится поведение нашего физического мира, поскольку оно может быть разложено на мельчайшие движения материи под действием различных сил. Вы толкаете холодильник, и он начинает двигаться, он падает, и вы вместе с ним.
Нам хорошо знакомы эти силы. Мы знаем, что для того, чтобы поднять или передвинуть более массивный (или более «тяжелый») предмет, нужно приложить большую силу (то есть «больше усилий»). Нам также известно, что если в воздухе отпустить предмет, он упадет. У нас имеется достаточно обширный набор интуитивных знаний об этих движениях, которые позволяют нам с легкостью бросать или ловить мячи, уворачиваться от быстро движущихся массивных транспортных средств и т. д. Благодаря тому, что поведение объектов подчиняется строгим и глубоким закономерностям, эти интуитивные навыки помогают нам в повседневной жизни. Интересно, что на протяжении всей своей истории человечество (за редкими исключениями) довольствовалось тем, что использовало эти закономерности в основном интуитивно и довольно ограниченно, особо не подвергая их анализу.
Галилей, вероятно, был первым, кто начал систематически изучать эти закономерности. С помощью ряда гениальных экспериментов, вроде того эксперимента в Пизе (возможно, апокрифического), он показал, что движениями в повседневном физическом мире управляют универсальные, математические законы. Удивительно, но эти основополагающие законы, над которыми стали задумываться тысячи лет назад и разъяснением которых серьезно занимался Галилей, сложились в законченную систему всего за несколько десятилетий, причем завершающим аккордом тут стали работы сэра Исаака Ньютона. Эта система законов получила название механики, и она до сих пор является основой нашего понимания физики. Посмотрим же на эти законы повнимательнее, дабы понять, что именно они говорят об экспериментах Галилея, которые не только заложили фундамент для работ Ньютона, но и явились источником вдохновения для Эйнштейна.
Исходя из наших представлений о положении в пространстве, скорости и инерции, ньютоновскую механику можно очень кратко сформулировать следующим образом: изменение скорости тела со временем, то есть ускорение, равно силе, приложенной к объекту, деленной на инерционную массу[16] тела:
(ускорение) = (сила) / (масса)
или иначе
(ускорение) × (масса) = (сила).
Отсюда немедленно следует, что если к телу не приложена сила, то нет и ускорения, то есть скорость не меняется; значит, если тело двигалось, оно продолжит двигаться с постоянной скоростью, а если покоилось – останется в неподвижном состоянии.
Эти концепции, хотя и довольно точные, в некотором смысле отличаются от их расхожих смыслов, поэтому ради прояснения их значений стоит проделать несколько мысленных экспериментов. Вообразите, например, что вы катите по земле очень большой деревянный шар, который под действием этой силы катится все быстрее и быстрее. Если теперь вы его отпустите, он будет какое-то время катиться с постоянной скоростью, пока другая сила, например, сила трения, не замедлит его движение[17]. Теперь вообразите, что вы точно так же толкнете чугунный шар того же размера. Если вы приложите то же усилие, чугунный шар будет катиться гораздо медленнее, чем деревянный. Действительно, его масса много больше, так что если приложить ту же силу, возникшее ускорение будет много меньше. Теперь допустим, что у вас есть двойник, который, видя ваши мучения с чугунным шаром, приходит вам на помощь. Вы вместе с двойником, прикладывая одинаковые усилия в течение того же времени, что и в предыдущем случае, можете заставить чугунный шар двигаться вдвое быстрее: вы удвоили силу, и, следовательно, ускорение тоже удвоилось.
Определив математически ускорение, массу и силу, а также закон, связывающий их, Ньютон показал, что движения тел можно рассчитать точно, если знать три параметра: начальные положение и состояние движения каждого тела, массу каждого тела и силу, с которой каждое тело действует на все другие тела. В коане «СТРЕЛА» мы обсудили, как можно, хотя бы в принципе, измерить положения тел и их скорости. Для определения положения мы измеряем их расстояние до фиксированного предмета. После этого мы определяем их скорости, для чего находим, насколько далеко они переместятся за короткое время. Ну, а как насчет их масс и сил?
Когда мы сравнивали реакцию чугунного и деревянного шаров на одну и ту же силу, мы как раз и сравнивали их инерционные массы (инерции). Если под действием одной и той же силы деревянный шар ускоряется в 10 раз быстрее, чем чугунный, мы можем заключить, что его масса в 10 раз меньше. И если мы возьмем одно «стандартное» тело, массу которого примем за единицу, тогда массы других тел мы можем измерять в этих единицах, сравнивая их ускорение с ускорением нашего стандартного тела. Таким образом, даже если мы точно не знаем, что такое масса, ее измерение (в любом случае относительно какого-то стандарта) – не такое уж сложное дело.
И наконец, как обстоит дело с силами? Есть силы, хорошо нам знакомые – например, сила, с которой человек толкает предмет, или же сила ветра, обдувающего тело. Другой известный пример – магнитные силы. Представьте себе, что вы держите огромный подковообразный магнит и подносите его к чугунному шару. Медленно, но верно чугунный шар под действием магнита покатится к вам. Если же вы поднесете два одинаковых магнита вместо одного, он покатится вдвое быстрее. А вот на деревянный шар ваш магнит не подействует. Такое впечатление, что магнитная сила, действующая на предмет, зависит от его внутренних свойств – в том числе от состава, от количества материала, из которого предмет состоит, и даже от его температуры. Это свойство можно назвать его магнитным зарядом.
И теперь мы подходим к гравитационной силе, которая привязывает нас к земной поверхности и заставляет предметы падать с башен. Хотя для понимания истинной природы гравитации пришлось ждать Ньютона, а потом и Эйнштейна, Галилей понял про нее две существенные вещи. Во-первых, она тянет тела вниз, к центру Земли. Мы можем назвать эту способность Земли притягивать тела к своему центру ее гравитационным полем. Во-вторых, как и в случае с магнетизмом, сила гравитации зависит от внутренних свойств тел, которые мы можем назвать их гравитационными зарядами. Гравитационный заряд, умноженный на гравитационное поле, дает силу, с которой тело притягивается к Земле, то есть, другими словами, – его вес. (Однако смысл последних двух понятий нужно различать: например, если вас удалить с Земли, ваш гравитационный заряд сохранится, а вес – нет.)
Теперь, вооружившись знаниями, мы можем вернуться назад и проанализировать проблему, сформулированную Галилеем: определить, какой шар будет падать быстрее – чугунный или деревянный. Чугунный шар притягивается к Земле с большей силой (из-за его большего гравитационного заряда и, следовательно, большего веса), но двигаться (из-за его большей массы) ему тяжелее, чем деревянному шару. Какое обстоятельство победит?
Пусть ответ нам даст ньютоновская механика. Если сила равна ускорению, умноженному на инерционную массу, и если на тела действует сила, равная их гравитационному заряду, умноженному на внешнее гравитационное поле, то есть:
(сила) = (гравитационный заряд) × (гравитационное поле),
то, объединяя эти два выражения, получаем
(ускорение) × (инерционная масса) = (сила) = (гравитационное поле) × (гравитационный заряд)
или иначе:
(ускорение) = (гравитационное поле) × (гравитационный заряд) / (инерционная масса).
Это позволяет нам определить ускорение любого объекта, если известно гравитационное поле и два свойства, присущие объекту: отклик объекта на гравитационное поле (гравитационный заряд) и его способность сопротивляться ускорению (инерция или инерционная масса).
Пути шаров в пространстве-времени под воздействием разных сил: магнитной, силы ветра и гравитационной.
Гравитационное поле везде на Земле более-менее одинаково. Но без дополнительной информации о том, как гравитационные заряды объектов соотносятся с их массами, ответить на вопрос Галилея представляется невозможным: объекты, у которых при заданной массе сравнительно больший гравитационный заряд, должны ускоряться быстрее, а те, у кого меньший – медленнее.
Похоже, мы в тупике. Ведь эксперимент Галилея (а также его последователей) говорит о том, что если мы сможем убрать все негравитационные силы, окажется, что в заданном гравитационном поле все объекты приобретают одно и то же ускорение. Если это правильно, тогда гравитационный заряд и инерционная масса должны совпадать! Другими словами, дополнительные трудности по перемещению чугунного шара в точности, идеально[18] компенсируются дополнительной силой притяжения его к Земле! Это несправедливо в отношении магнетизма или любой другой силы.