Данный поразительный факт оставался по существу необъясненным в течение 300 лет, пока Альберт Эйнштейн не показал, что этому есть глубокая причина и что ее объяснение требует от нас радикально изменить наше отношение к пространству и времени. Вспомним коан «СТРЕЛА», из которого мы узнали, что когда нет никаких сил, объекты движутся по прямой с постоянной скоростью. Другими словами, если не приложены никакие силы, объекты движутся по прямой в пространстве-времени. Чтобы увидеть это, давайте построим траектории шаров так же, как мы сделали это для стрелы. До тех пор, пока шар катится с постоянной скоростью в одном направлении, его путь в пространстве-времени остается прямолинейным. Но если шар ускоряется (например, если мы поставили перед ним магнит), он за одинаковые интервалы времени будет продвигаться на все большее и большее расстояние и его путь в пространстве-времени искривится, а путь деревянного шара, на который магнитная сила не действует, останется прямолинейным (верхний рисунок на стр. 52). Мы также можем вообразить, что на шары подул сильный ветер. В этом случае на шары действует одинаковая сила, но у деревянного шара наименьшая масса и он максимально подвержен действию ветра; свинцовый же шар будет ускоряться меньше всего (нижний рисунок на стр. 52). А гравитационное поле Земли притягивает все три шара и ускоряет их. Разница с предыдущими случаями, как установил Галилей, состоит в том, что в этом случае все три кривые искривляются одинаково (рисунок на стр. 53).
С этой точки зрения силы – то есть то, что вызывает ускорение движущихся объектов, – в действительности являются причиной того, что объекты отклоняются от прямолинейного пути в пространстве-времени. Если сил нет, путь в пространстве-времени – прямая линия, а чем больше сила (при заданной массе), тем более искривленным становится путь.
Но мы видели, что гравитация – это странная сила, поскольку в отличие от других сил она меняет пути объектов способом, не зависящим ни от массы объекта, ни от материала, из которого он сделан, ни от иных его свойств. Ускорение объекта в гравитационном поле никак не связано с тем, что представляет из себя объект, – оно зависит только от его окружения. Мы могли бы вообще не обратить на это внимания, посчитав курьезом. Но для Эйнштейна это послужило ключом к разгадке истинной природы гравитации. На основе данного ключевого свойства Эйнштейн провозгласил, что гравитация – вовсе и не сила.
Погодите-ка! Но если это не сила, тогда почему предметы не движутся по прямой в пространстве-времени?
Согласно Эйнштейну, предметы под действием гравитационного поля все-таки движутся по прямой в пространстве-времени!
Да как же это?!
5. Идеальная карта
(Шэньян, Китай, 1617 год)
Довольно длинный путь вниз по довольно извилистой тропинке… Весь замысел сначала казался хотя и дерзким, но довольно простым. Картография входила в число многих других увлечений Кундулун-хана, планы по расширению собственной империи были весьма амбициозны, и потому его бесила неточность существующих карт. Однажды, собрав картографов, он объявил: «Ученейшие из ученых! Я желаю составить карту непревзойденной точности. Она должна быть высечена на гладком каменном полу здания Военного совета и быть столь совершенной, чтобы я и мои генералы могли с абсолютной точностью найти расстояния между пунктами моей растущей империи, просто измерив расстояние между соответствующими точками на карте».
Следуя придуманному им самим плану, хан собрал огромную армию всадников, снабдил их инструментами, позволяющими рассчитывать местоположение, астрономическими приборами и бумагой для записи наблюдений. Хан разместил всадников на одинаковых расстояниях друг от друга вдоль линии, берущей свое начало на самой западной границе империи и простирающейся на восток. Каждый всадник получил команду ехать на север и в каждом месте, где был какой-то ориентир, отмечать расстояние, пройденное от предыдущей отметки. А какая же роль отводилась тебе? Ценя твои математические познания, хан поручил тебе помочь его картографам проверять, сопоставлять и осмысливать данные.
Сначала все казалось простым, и, использовав собранный материал, ты с учеными хана смог составить для него отличные карты. Но идеальную карту нарисовать не получалось: чем тщательнее вы вырисовывали детали, тем запутаннее и противоречивее становилась общая картина. Проходила неделя за неделей – и наконец вы признались хану в своем фиаско.
Однажды поздним вечером, созерцая полную луну, ты неожиданно понимаешь, что ваши проблемы были вызваны тем, что Земля не плоская, а круглая! Однако хан, выслушав тебя, презрительно воскликнул: «Естественно, Земля круглая, но если бы я хотел получить глобус, я бы пригласил специалистов по изготовлению глобусов. Остальные картографы понимающе кивнули. А хан продолжил: „Я хочу иметь плоскую карту и думал, что твоего интеллекта хватит, чтобы изготовить ее для меня. Разве важно, что Земля круглая? Везде, где я побывал, она выглядела достаточно плоской! Уходи и возвращайся, когда будет готово что-то, чем я смогу воспользоваться!“»
Ты кланяешься и уходишь, чувствуя себя наказанным. Китай обошелся с тобой не слишком дружелюбно, и ты затосковал по времени, проведенному в горах. Тебе показалось, что оно прошло слишком быстро. Ты представил, как Трипа Драгпа[19] говорит что-нибудь мудрое и ободряющее, например: «Двигайся постепенно, шаг за шагом. Скоро хан оценит тебя по-настоящему».
А потом, после долгих раздумий, до тебя наконец доходит! И ты направляешься прямо к хану.
Минуточку, насколько прямо?
Нам всем хорошо знакомы карты и то, как ими пользоваться, а современная картография столь совершенна, что мы редко думаем о точности карт или о том, как именно они изготовлены. Но (что вовсе не редкость) за этой привычностью скрываются некие очень любопытные тонкости. Стоит лишь начать тщательно и глубоко разбираться в том, что есть карта и как ею пользоваться, – и нюансы оказываются весьма важны. Некоторые из этих вопросов, напрямую связанных именно с нашими усилиями понять, что такое пространство, время и движение, и мучили Кундулун-хана и его ученых. Так что же такое карта?
На самом базовом уровне карта – это представление (обычно в графическом виде) территории, которую она отображает, причем соотношение между элементами отображаемой территории должно быть правильным. Это значит, что хорошая карта «похожа» на отображаемую территорию и по ней можно понять, как выглядит эта территория и как на ней ориентироваться. Но для хана этого было недостаточно: на своей карте он хотел математически точного отображения территории – такого, чтобы по ней можно было точно измерить расстояние между городами или же найти точные размеры разных регионов его империи. Чтобы понять, чего хан добивался от картографов и почему огорчился, не получив этого, мы должны задуматься о том, что делает карту точной.
С чего начинается процесс составления карты? С собирания необработанных данных о местоположении всех чем-то примечательных физико-географических точек территории. Всадники хана как раз и составляли списки таких данных, когда скакали в северном направлении, отправившись в путь из своих исходных пунктов, расположенных вдоль протянувшейся с запада на восток линии (рис. на стр. 59). Каждый из них отмечал расстояние от исходной линии до всех встречающихся по пути заметных объектов, давая ученым возможность составить таблицу, в которой каждому такому объекту соответствовало две координаты, определяющие его положение: расстояние в восточном направлении (свое для каждого всадника) и расстояние в северном направлении (измеренное всадником). Эти координаты очень похожи на долготу и широту, которые используются в современных картах.
Но этот список еще не похож на отображаемую территорию. Сходство возникнет, когда на карту нанесут каждую отметку, а также сетку из линий, в которой длина стороны каждой ячейки-клетки соответствует определенному расстоянию на местности. В примере с картой Кундулун-хана мы можем изобразить сетку, вертикальные линии которой будут соответствовать пути каждого всадника и пересекаться с горизонтальными линиями, расположенными на одинаковых расстояниях друг от друга по ходу движения каждого всадника (рис. чуть ниже). Соотношение между реальными физическими расстояниями и расстояниями на карте определяет масштаб карты (например, 1 см на бумаге может соответствовать расстоянию 10 км на местности). В точности как хан и надеялся, большие расстояния на местности можно было бы получать, просто измерив маленькие расстояния на бумаге, а потом умножив их на масштаб.
Попытка составления карты способом, придуманным ханом.
Такая система великолепно знакома всем, кто пользовался картами, и предполагает, что составление действительно точных карт – процедура незамысловатая. Но это не так[20]. И мы убедимся в этом, если отправим еще одного всадника далеко на север – в самый конец карты, которую мы только что составляли. Мы можем измерить расстояние между двумя горами по карте и определить, что оно составляет 10 см, что соответствует, по нашим представлениям, 100 км на местности. Однако всадник может измерить реальное расстояние, и расстояние между горами окажется равным 96 км! Значит, что-то здесь не так! Масштаб зависит от места: измеренный в одной части карты, он меняется при переходе к другой части. И, что еще хуже, при тщательном исследовании обнаруживается, что не только общий масштаб меняется от точки к точке, но и масштаб на линии север-юг часто отличается от масштаба по линии восток-запад. Вот это как раз и расстроило хана, а расстроенный хан всегда опасен.
Примечания
1
Цитата из книги Ludwig von Bertalanffy. Problems of Life: An Evaluation of modern Biological Thought. Eastford, CT: Martino Fine Books, 2014, 1.
2
Michael White and John Gribbins. Einstein: A Life in Science. London: Simon & Schuster, 1993, 262.
3
Если не верите, что такое возможно, попытайтесь полистать наиболее известную работу Ньютона «Математические начала натуральной философии», содержащую в основном текст, а не формулы! – Прим. редактора: как это, так и дальнейшие примечания, кроме особо оговоренных, авторские.
4
Перевод выполнен Jay Garfield in The Fundamental Wisdom of the Middle Way: Nagarjuna’s Mulamadhyamakakrika. New York: Oxford University Press, 1995, 6. Нагарджуна – буддийский философ второго века, живший в Индии, на чьих идеях и трудах в основном сформировался буддизм Махаямы, подразделом которого и является дзен-будд.
5
WILLIAM James. The Principles of Psychology. New York: Dover, 1918, 608.
6
Греческой буквой Δ («дельта») часто обозначают разность между двумя вели чинами. Таким образом, «Δt» – сокращенное обозначение выражения «изменение величины t».
7
1 биение сердца = 1 сек. 1 год = примерно 3,1525 X 10
7
– Прим. научного редактора.8
Galileo Galilei. Dialogue concerning the Two Chief World Systems, Ptolemaic &Copernican, trans. Stillman Drake. Berkeley: University of California Press, 1953, 187.
9
Солнце движется со скоростью 370 км/с (с точностью до 1 %) по отношению к космическому микроволновому фоновому излучению, измеренному в экспериментах со спутниками; см. С. Н. LINEWEAVER et al. The Dipole Observed in the COBE DMR 4 Year Data // Astrophysical Journal 470 (1996), 38.
10
Нужно различать скорость как вектор, который определяет величину скорости и ее направление, и модуль скорости. Поэтому когда мы говорим о постоянстве вектора скорости, мы понимаем под этим постоянную ее величину и направление. В отличие от этого, постоянство модуля скорости допускает изменение направления.
11
Цитата из STILLMAN Drake. Galileo at Work: His Scientific Biography. Mineola, NY: Dover, 1978, 186.
12
Например, широта, долгота и высота над землей. Когда мы говорим о том, что наш мир трехмерен, мы имеем в виду то, что нам требуются в точности три числа для описания нашего положения в пространстве.
13
«Обнаружен Эйнштейн, спрятавшийся в свой день рождения: он игрался с подаренным микроскопом» // New York Times, 15 марта 1929 г., 3.
14
Kazuaki Tanahashi, ed. Moon in a Dewdrop: Writings of Zen Master Dogen, trans. Robert Aitken et al. San Francisco: North Point Press, 1985, 77.
15
Автор, к сожалению, допустил тут ошибку. Это цитата не из «Диалога» Галилея, а из его труда «Беседы и математические доказательства, касающиеся двух новых наук». Оттуда реплика Сагредо: «Я… уверяю вас, что пушечное ядро весом в сто, двести и более фунтов не опередит и на одну пядь мушкетной пули весом меньше полуфунта при падении на землю с высоты двухсот локтей». Галилей, Галилео, Избранные труды, М.: Наука, 1964, т. 2, с. 164–167. – Прим. переводчика.
16
Автор и здесь использует термин «инерция». В русской физической литературе в данном контексте обычно используется термин «инерционная масса» или просто «масса». – Прим. переводчика.
17
Качение объектов в действительности немного сложнее, чем мы здесь изобразили, но для наших целей можно считать, что поведение этих объектов по существу такое же, как если бы они просто скользили. Галилей фактически тоже использовал катящиеся шары в своих экспериментах, исключив некоторые усложняющие изложение сложности. В качестве особого бонуса для тех, кто немного разбирается в ньютоновской механике и любит читать сноски, привожу забавный парадокс: почему вращающийся шар в конце концов перестает катиться? Чтобы замедлился центр масс шара, к нему должна быть приложена сила (со стороны земли), действующая в направлении, противоположном общему направлению движения шара. Но сила в действительности приложена не к центру масс, а к точке на поверхности шара, и, следовательно, она создает крутящий момент, причем в таком направлении, что шар должен был бы закручиваться быстрее. Но более быстрое вращение означало бы более быстрое качение. В чем тут противоречие?
18
Со времен Галилея ученые доказали эквивалентность инерционной массы и гравитационного заряда с точностью большей одной триллионной, см. С. М. Will. The Confrontation between General Relativity and Experiment // Living Reviews in Relativity 4, no. 1 (2001): art. 4.
19
Ганден Трипа («Держащий Золотой Трон») – титул духовного лидера школы тибетского буддизма Гелуг, являющегося настоятелем монастыря Ганден. Ганден Трипа является выборной должностью, а не линией реинкарнации. – Прим. редактора
20
Измерение точных расстояний и направлений – гораздо более трудная задача, чем можно вообразить в наш век одометров и GPS-систем. Но так как это не самая интересная проблема, давайте считать, что умелые наездники и ученые хана оказались способными решить эту проблему и произвести свои измерения с очень высокой точностью.