К тому времени, как Мишер совершил свою последнюю поездку из Давоса в Базель, он сделал все, что мог, чтобы похоронить нуклеин молекулу, которая могла бы прославить его еще при жизни. И он установил традицию предполагать, что только белки могут быть материалом, из которого состоят гены, предрассудок, которые сохранился до самого открытия двойной спирали.
Слишком мало, слишком поздно
Незадолго до смерти Мишера в Америке стали появляться сообщения о принципиально новом лекарстве[31]. Заявка на патент США 587, 278, поданная Джоном Карнриком из Нью-Йорка 4 января 1895 года, описывала уникальный тканевый препарат, который стимулировал ядро, побеждал «токсичные микробы» и был призван произвести революцию в медицине. В блестящем докладе[32], проведенном 7 мая 1895 года для Американской медицинской ассоциации в Балтиморе, д-р Т. О. Саммерс из Сент-Луиса описал, как это новое лекарство вызывает «молекулярную вибрацию» в ядре. В отличие от «бесполезного мусора», который обычно распространяют врачи, оно обладает «самой поразительной силой» в лечении угрожающих жизни болезней, в том числе рака, заражения крови и туберкулеза.
Речь Саммерса была опубликована в Journal of the American Medical Association («Журнале Американской медицинской ассоциации») несколькими неделями позже. Мишер был бы заинтригован, если бы прочитал о новом чудо-лекарстве, которое, если Саммерс был прав, могло бы спасти ему жизнь. К сожалению, он умер до того, как журнал дошел до Швейцарии.
Что это было? Приготовленное из зобной железы и других тканей телят чудо-лекарство отличалось высоким содержанием фосфора и называлось протонуклеином, поскольку включало в себя лучшие возможные источники этой чудесной молекулы нуклеина. Скептицизм был отложен, пока доктора ждали, окажется ли протонуклеин в действительности выдающимся даром с переднего края науки или просто очередным средством от шарлатана, пытающегося быстро срубить денег.
Глава 3
Мешок с червями
Не только нуклеиновым кислотам не удавалось покорить воображение ученых. Содержащая их структура тоже прошла свой цикл открытия и игнорирования. Когда Мишер начал свои «бессмертные исследования» в 1868 году, ядро было известно уже 35 лет, но большую часть этого времени оно скрывалось за мелким шрифтом. Неудивительно, что призыв Мишера к «серьезному изучению химического состава ядра клетки» так долго оставался незамеченным.
На современных изображениях клетки ядро показано гордо сидящим в середине, такое же заметное, как полная луна на ночном небе. Вначале, однако, оно было всего лишь «мутным пятнышком», которое могло быть художественной вольностью.
Броуновское достижение
В вышедшем летом 1858 года выпуске[33] журнала Annals and Magazine of Natural History («Анналы и журнал естественной истории») содержалась богатая подборка материалов для всех, кто увлекался живой природой, от клюва «хищной птицы» до соков, растворяющих раковины, в желудке краба. Там также приводилась статья, в которой намекалось, что ботаникам стоило бы умереть, чтобы добиться полного признания («Мы начинаем интересоваться их жизнями только тогда, когда они уходят в небытие»), и содержалось напоминание для некого мистера Броуна, чтобы он продолжал свои труды, пока его время не истекло, поскольку «некоторые его работы все еще ожидают завершения». В этих словах, написанных несколькими годами ранее, звучала неуместная ирония, поскольку заголовок статьи гласил: «Сообщение о смерти Роберта Броуна, эсквайра».
Покойный последовал этому указанию с большим отличием, потому что он был вовсе не обычным мистером Броуном. Он был членом Королевского общества Робертом Броуном, главным ботаником во время четырехлетнего плавания на корабле Его Величества «Инвестигейтор» (Investigator) в Австралию, а позднее президентом Лондонского Линнеевского общества и первым хранителем ботанического отделения Британского музея. Как «профессиональный естествоиспытатель и шотландец с холодным умом»[34], он идеально подходил для того, чтобы составить каталог 4000 растений, которые «Инвестигейтор» привез в Англию; в процессе работы он обнаружил свыше 2000 видов, до тех пор неизвестных науке. Его холодный шотландский ум дал ему спокойно услышать известие о крушении «Порпойза» (Porpoise), аналогичного «Инвестигейтору» судна, со всеми его сокровищами, но позволил ему по-настоящему рассердиться, когда негодяй-ботаник[35] Ричард Солсбери опубликовал фрагменты лекций Броуна под собственным именем.
Величайшую свою работу Броун проделал в заполненном книгами доме на Дин-стрит в Сохо, Лондон, который был передан ему Джозефом Бэнксом, экстравагантным президентом Королевского общества. Его имя увековечено в «броуновском движении»[36] случайном перемещении крошечных частиц, находящихся во взвешенном состоянии в капле воды. Броун впервые наблюдал это явление в 1827 году, когда навел свой микроскоп на крошечные частицы (он назвал их молекулами), которые высыпались из прорвавшихся пыльцевых зерен. Эти молекулы не были живыми, поскольку подобные крошечные частицы чего бы то ни было даже кусочка известняка, отщепленного от Сфинкса, выполняли тот же извечный танец.
Микроскоп[37], через который Броун наблюдал за ужимками своих молекул, совсем не был похож на элегантные функциональные инструменты, красующиеся сегодня на лабораторных столах. Он представлял собой торжество простоты всего с одной крохотной линзой идеальной стеклянной сферой диаметром едва ли в миллиметр, помещенной в окуляр, установленный поверх латунной трубки высотой около фута. Вогнутое зеркало у основания трубки направляло свет масляной лампы на образец, который фиксировался прямо под линзой. Образец мог представлять собой часть цветка или листа, или пыльцевые зерна в капле воды, зажатой между тонкой стеклянной пластиной и защитной поверхностью из слюды. У линзы чрезвычайно короткое фокусное расстояние (менее половины миллиметра), что означает, что глаз, окуляр и образец должны были находиться предельно близко друг к другу, но увеличение было поразительным. Линзы Броуна увеличивали до тысячи раз достаточная мощность, чтобы проводить биопсию тканей.
«Особый вкус в ботанике» сосредоточивался для Броуна в половой жизни орхидей[38], которая протекает неторопливо и нерешительно и может включать в себя заигрывания с другими видами[39]. Изучая под микроскопом интимные детали процесса, он заметил, что каждая клетка на кожице листа орхидеи содержит одну «ареолу». В клетках ирисов, лилий и других растений также наблюдались ареолы, всегда по одной на клетку и обычно расположенные в центре. Броун последовательно создавал подробное изображение ареолы: «строго круглая», зерновидная и «довольно мутная». Примечательно, что ему удалось извлечь ареолу из клеток, которые образуют волоски у цветов традесканции; извлеченная ареола, выдавленная с помощью кончика тонкой иголки, подобно тому, как хирург вытаскивает катаракту, имела форму чечевицы, если смотреть сбоку, и, по-видимому, была завернута в «окутывающую мембрану».
Ареола уже была нарисована мастером ботанической иллюстрации Францем Бауэром на некоторых его изображениях орхидей, но он придавал ей «небольшое значение». Теперь Броун выявил, что ареола постоянно присутствует в самых разнообразных растительных клетках. Помимо рассуждений о том, что она производит пыльцевую трубку для оплодотворения яйцеклетки, у него не было идей, для чего она могла быть нужна.
Мы неосознанно помним сегодня о Броуне, потому что в своей знаковой работе о размножении орхидей (1833 год) он переименовал ареолу. Используя латинское слово, обозначающее ядро ореха, он обозначил ее как «ядро (nucleus) клетки, как ее можно было бы назвать»[40]. И новое название прижилось.
Ядерное распространение
Через несколько лет после открытия Броуна ядро было признано обязательным элементом практически всех животных и растительных клеток. Некоторые ядра относительно изящные, в то время как лимфоциты, наполняющие зобную железу (классический источник ДНК), практически полностью состоят из ядра, окруженного тонким ободком цитоплазмы. Большинство ядер имеют шарообразную или линзовидную форму, но лейкоциты, которые Мишер выделял из гноя, отличаются многолопастной системой, похожей на резиновую перчатку, наполненную водой.
Есть редкие исключения из правила «одна клетка одно ядро», к ним относятся красные клетки крови (эритроциты) млекопитающих, откуда ядро вываливается во время созревания в костном мозге. В отличие от них, эритроциты птиц и рептилий сохраняют свои ядра и, таким образом, поставляют нуклеин, что позволило студенту Гоппе-Зейлера Плосу подтвердить невероятное открытие Мишера.
К середине 1850-х годов было общепризнано, что клетки размножаются путем деления надвое и что ядро также разделяется и чудесным образом вновь появляется в каждой из двух дочерних клеток. Большинство биологов полагало, что ядро является необходимым для жизни клетки, потому что клетки, из которых в процессе эксперимента извлекали ядро, вскоре погибали. Другие, тем не менее, считали, что ядро всего лишь попутчик, которого увлекают за собой более важные компоненты клеточного механизма. Самой значимой фигурой антиядерного лагеря был Томас Гексли, президент Королевского общества и «Бульдог Дарвина», который дал знаменитый отпор отрицавшему эволюцию Сэмюэлу Уилберфорсу во время дискуссии в Оксфордском союзе. Гексли настаивал на том, что ядра (и даже клетки) были артефактами микроскопии и что странная желеобразная субстанция, извлеченная со дна Северного Атлантического океана в 1857 году, была революционной безъядерной формой жизни. У этого желе не было никакой микроструктуры, и оно абсолютно ничего не делало, но Гексли дал ему название Bathybius («жизнь из глубины») haeckelii[41] в честь Эрнста Геккеля, немецкого разностороннего ученого, пропагандировавшего собственные идеи, который в то время также не придавал ядру никакого значения. Гексли продолжал верить в Bathybius более 20 лет после того, как было доказано, что желе просто химический артефакт.
К тому времени непостоянный Геккель изменил свою точку зрения и присоединился к сторонникам ядра. Это произошло потому, что ядро вернулось домой и, несмотря на ужасную привычку исчезать как раз тогда, когда становится интересно, начало делиться своими секретами. А новые находки указывали в увлекательном направлении. В 1866 году Геккель написал[42], что «ядра обеспечивают передачу наследственных характеристик», как если бы это было совершенно очевидно все время.
Потребовалось еще 20 лет, чтобы подкрепить доказательствами сделанную Геккелем констатацию факта. Это удалось сделать благодаря прогрессу в оптике и гистологии изучении тканей под микроскопом. Прославленное увеличительное стекло Броуна развилось в составные микроскопы, которые мы знаем сегодня, с отдельными линзами в объективе (непосредственно над образцом) и окуляре. В результате получалось гораздо более четкое и яркое изображение, так что микроскоп можно было направить на живые клетки или очень тонкие полоски ткани, которые пропитывали парафином, чтобы сохранить внутреннюю структуру. Полоски были тонкими (стопка из 200 единиц достигала бы всего миллиметра в высоту) и прозрачными, что позволяло подкрашивать элементы клетки синтетическими красителями. Эти гистологические красители преобразили монохромный облик микроскопии. Они вступали в реакции с отдельными компонентами, такими как белки, жиры или нуклеиновые кислоты, и расцвечивали их красками, которые могли бы украсить палитру художника. К первым красителям относились метиловый зеленый, эозин (насыщенно-розовый, названный в честь древнегреческой богини утренней зари) и толуидиновый синий, который обозначает ядро богатым ультрамариновым оттенком. Фридрих Мишер мог бы стать первопроходцем в этой новой области гистохимии. В 1874 году он обнаружил, что прозрачный раствор нуклеина приобретает красивый голубо-зеленый цвет при добавлении метилового зеленого; но он не испытывал никакого желания «присоединиться к гильдии красильщиков»[43] и оставил это наблюдение, чтобы его заново открыл кто-нибудь другой.
К счастью, другие ученые были более заинтересованы новыми красителями и их способностью выявлять детали устройства клетки, которые ранее были невидимы. И вскоре из зерновидных внутренностей ядра Роберта Броуна начали появляться странные фигуры красивые, но сбивающие с толку.
Конфликт лояльности
В состоянии покоя, которое занимает свыше 99,99 % жизненного цикла большинства клеточных типов, ядро мало чем выдает себя под микроскопом. Оно сидит в клетке тихо и бесстрастно, словно игрок в покер; а затем ни с того ни с сего вовлекается в такую запутанную бурную деятельность, что даже самые зоркие микроскописты не могли договориться о том, что произошло. Ядро растворяется, оставляя на своем месте своеобразные меняющие форму элементы. Затем клетка удлиняется и два ядра появляются с противоположных концов. Наконец, вся система разрывается в середине, в результате чего появляются две дочерние клетки, у каждой из которых имеется целенькое ядро, которое выглядит точно так же, как первоначальное.
Деление клетки лежит в основе жизни, здоровья и восстановления организмов. Ткани и органы растут и расширяются, потому что клетки, из которых они состоят, размножаются путем деления надвое. Некоторые типы клеток, такие как определенные нервные клетки (нейроны) мозга, живут свои долгие жизни, не зная переживаний деления, но у большинства клеток более честолюбивые замыслы. Клетки кожи и внутренней оболочки кишечника[44] подвергаются сильному износу, поэтому им приходится чаще регенерировать самих себя, чтобы сохранять эти поверхности в целости. Даже для этих интенсивно обновляющихся тканей деление клетки редкое событие; например, оно занимает лишь последний час из трехдневного периода жизни клетки эпителия толстой кишки. Клетки делятся более часто в эмбрионе и при восстановлении тканей после повреждения ярким примером может служить новая лапка, которая вырастает у личинки тритона после неудачной встречи с биологом-экспериментатором.
Благодаря своей благоприятствующей анатомии некоторые виды чрезвычайно поспособствовали изучению деления клетки. Если посмотреть невооруженным глазом, лошадиная острица выглядит как 5-дюймовая невероятно подвижная макаронина; под микроскопом это ответ на мольбу биолога гермафродит с просвечивающими гонадами, где на одном образце можно проследить развитие икры и спермы. Личинки амфибий, таких как тритоны и саламандры, наделены большими удобными для микроскопистов клетками кожи, жабр и мочевого пузыря. А слюнные железы мух содержат необыкновенно большие хромосомы с таким изысканным рисунком, что мутации можно буквально увидеть.