COVID-19/SARS-CoV-2 - Александр Герасимович 2 стр.



I. ЭПИДЕМИОЛОГИЯ

Новый коронавирус появился в китайском городе Ухань (Wuhan) 25 ноября 2019 года [1]. 11 февраля 2020 Международный комитет по таксономии вирусов дал ему официальное название SARS-CoV-2 (изначально его называли 2019-nCoV). По данным ВОЗ, вспышка связана с циркуляцией инфекции на рыбацком оптовом рынке Хуаньань в Ухане, где также продавались живые животные. Этот рынок был закрыт 1 января 2020 г.

Из числа возможных возбудителей новой болезни были исключены грипп, птичий грипп, SARS-CoV, MERS-CoV и другие патогены. Симптомы заболевания у 41 заболевшего с подтвержденным заболеванием наступили в период с 8 декабря 2019 г. по 2 января 2020 г. [2]

Пандемия, несомненно, застала нас врасплох. Многие страны оказались неготовыми к эпидемии, другие же стали примером для остальных. В некоторых странах сначала удалось сдержать вспышку (Тайвань, Япония), в других вирус распространился быстрее (Италия, Испания, Иран). Был нанесен вред экономикe многих стран, здравоохранению и социальному благополучию населения.


По состоянию на 4 апреля 2023 года в мире зафиксировано 761.402.282 подтвержденных случая COVID-19, погибли более 6.887.000 человек. Из них, в Италии 25 673 442 случая, 188933 погибших [3] (в т.ч. 379 медицинских работников [4]).

В период со 2 по 29 января 2023 года во всем мире было зарегистрировано почти 20 миллионов новых случаев заболевания и более 114 000 случаев смерти. В эпидемиологических тенденциях в последние недели января 2023 г. преобладал значительный всплеск заболеваемости и смертности в западно-тихоокеанском регионе, особенно в Китае.


Город Фабриано, май 2020 г.


На региональном уровне число новых случаев, зарегистрированных со 2 по 29 января 2023 г., уменьшилось во всех регионах ВОЗ: регион Западной части Тихого океана (-81%), регион Юго-Восточной Азии (-71%), Европейский регион (-63%), регион Америки (-35%), Африканский регион (-20%) и Регион Восточного Средиземноморья (-15%). Число новых случаев смерти, зарегистрированных за 28 дней, увеличилось в трех регионах: регионе Западной части Тихого океана (+173%), регионе Восточного Средиземноморья (+29%) и регионе Америки (+13%). Число смертей снизилось в трех регионах ВОЗ: регионе Юго-Восточной Азии (-62%), Африканском регионе (-45%) и Европейском регионе (-25%).

На национальном уровне наибольшее количество новых случаев со 2 по 29 января 2023 г. было зарегистрировано в Китае (11 354 058 новых случаев; -85%), Японии (3 207 097 новых случаев; -20%), Соединенных Штатах Америки (1 513 538 новых случаев; -16%), Республике Корея (1 032 801 новый случай; -43%) и Бразилии (459 986 новых случаев; -54%). Наибольшее количество новых смертей за 28 дней было зарегистрировано в Китае (62 759 новых смертей; +244%), Соединенных Штатах Америки (14 625 новых смертей; +31%), Японии (10 122 новых смертей; +46%), Великобритании (3137 новых смертей; -3%) и Бразилии (2889 новых смертей; -24%). [223]

Во всем мире с 16 января по 12 февраля 2023 года было зарегистрировано более 6,7 миллионов новых случаев заболевания и более 64 000 смертей, что на 92% и 47% меньше по сравнению с предыдущими 28 днями. (Weekly epidemiological update on COVID-19, 130 15 января 2023) Некоторые эпидемиологи, в связи с этим, осторожно предполагают о возможном завершении пандемии.

Пандемия распространилась на более чем 190 стран; потребовалось более трех месяцев, чтобы достичь первых 100 000 подтверждённых случаев, и всего 12 дней, чтобы достичь следующих 100000. 30 января 2020 г. Всемирная организация здравоохранения объявила эту вспышку чрезвычайной ситуацией в области общественного здравоохранения, имеющей международное значение. 11 марта 2020 г. ВОЗ определила вспышку как пандемию.

Для сравнения, во время вспышки SARS-CoV было более 8000 подтвержденных случаев и 800 погибших по всему миру; во время MERS-CoV  2494 подтвержденных случая и 858 погибших. [98]



COVID‐19  зооноз [71] (т.е., резервуаром вируса являются животные). Источник инфекции  больной человек и реконвалесцент (человек, который выздоравливает), выделяющие вирус в окружающую среду при кашле и процедурах, сопровождающихся повышенным образованием аэрозолей (БАЛ, интубация, бронхоскопия и др.). В шестом руководстве Китая по COVID-19 отмечалось, что бессимптомные пациенты также могут служить источником инфекции.

Соотношение подтвержденных случаев по полу (М:Ж) составляет 1,03:1. Для мужчин средний возраст составляет 52 года (IQR 3765), а для женщин 50 лет (IQR 3564). [5]

R0 (индекс репродукции, reproductive number) = 22,5 [38], по некоторым данным 5,7 [42]. Индекс репродукции дельта-штамма R0=5.08. [176] Индекс репродукции штамма омикрон R0=4,20 [473], штамма бета в настоящее время не показывает преимущества передачи по сравнению с B.1.617.2. [794] Индекс репродукции штамма альфа R04,6, штамма эпсилон R01,2. [461] Индекс репродукции  это количество здоровых человек, которым больной может передать вирус. R0 SARS-CoV-2 растет с увеличением числа подтвержденных случаев, и до настоящего времени он превысил R0 MERS (R0=0,6) и SARS (R0=1). [96] Вирусная нагрузка при появлении симптомов составляет 4,78 log (копий/мл). [576]

Распространение вируса при ветре 4км/час  на расстояние 6м за 5 секунд.

Смертность: около 0,66% в Китае, 2,7% вне Китая [43] (для сравнения, при гриппе смертность обычно значительно ниже 0.1%). [38] По данным одного метаанализа, смертность госпитализированных пациентов с COVID-19  6,5%, при гриппе типа А  6%, а при гриппе типа В  3%. [321] Мета-регрессионный анализ также показал, что общий IFR составляет 0,03% и 0,07% в возрастных группах 059 и 069 лет соответственно. [555]


Что касается смертности по некоторым странам, то, по состоянию на 2 апреля 2020, официальная статистика показала, что в Германии было зарегистрировано 872 погибших от COVID из 73522 подтвержденных случаев, что соответствует коэффициенту смертности 1,2% [108]; при этом, в Италии смертность 11,9%, 9% в Испании, 8,6% в Нидерландах, 8% в Великобритании и 7,1% во Франции. [109]

Возможные причины низкой смертности в начале вспышки в Германии: быстрое реагирование и принятие необходимых мер, массовое тестирование, отсутствие случаев передачи инфекции в домах престарелых или внутрибольничных вспышек. [110] Как ни странно, смертность от всех причин во время вспышки COVID-19 в Японии в 2020 году снизилась по сравнению с историческим исходным уровнем. (D Onozuka, 2022)

Похоже, что афроамериканцы и латиноамериканцы непропорционально пострадали от COVID-19 и в большей степени, чем белые, с точки зрения заболеваемости, госпитализаций и смертности. [563]

Один метаанализ указывает на то, что CFR COVID-19 не является фиксированным или статическим значением. Скорее, это динамическая оценка, которая меняется со временем, численностью населения, социально-экономическими факторами и усилиями отдельных стран по смягчению последствий. [554]


Стабильность вируса при разных условиях окружающей среды (в экспериментальных условиях):

Температура: 4° С  выживаемость более 14 дней, 22° С  выживаемость от 7 до 14 дней, 70° С  выживаемость до 5 минут.

Выживание на поверхностях: бумага  до 3 часов, одежда и дерево  до 2 дней, сталь и пластик  до 7 дней, стекло  до 4 дней, банкноты  до 4 дней, внешняя поверхность маски  больше 7 дней. Вирус чувствителен к бытовому отбеливателю, этанолу (70%), хлоргексидину (0,05%) и т. д. [10]

Определена опасная вирусная нагрузка на поверхности до 21 дня на полимерных, стальных, стеклянных поверхностях и бумажных банкнотах. Для вирусов, отличных от SARS-CoV-2, самый длительный период выживания составил 14 дней, зафиксированный на стекле. Условия окружающей среды могут влиять на выживаемость вируса, и фактически низкие температуры и низкая влажность способствуют длительному выживанию вируса на зараженных поверхностях, независимо от типа поверхности. [463]

Несмотря на различия в опубликованных исследованиях, похоже, что хлоргексидин в разных концентрациях может быть эффективным для снижения вирусной нагрузки SARS-COV-2 в слюне. [477]

Необходимы дополнительные исследования не только по специфической дезинфекции в контексте коронавируса, но и по регулярному надзору или мониторингу вирусной нагрузки в осадке сточных вод, сточных водах и фильтрате свалок. Наконец, присутствие SARS-CoV-2 и других патогенных микроорганизмов в осадке сточных вод, сточных водах и фильтрате свалок может препятствовать обеспечению безопасной воды и здоровья населения в экономически маргинализированных странах. [483]

II. ЭТИОЛОГИЯ

Новый вирус SARS-CoV-2  это несегментированный РНК-содержащий (single-stranded, ssRNA+) бетакоронавирус (относится к тому же семейству, что и MERS-CoV и SARS-CoV), Baltimore group IV. Принадлежит к семейству Coronaviridae, подсемейству Orthocoronavirinae, род Betacoronavirus, подрод Sarbecoviridae и к отряду Nidovirales [258261]. Размер вируса  0,1 микрон (100150 нм).

Коронавирусы получили свое название от характеристики их S-белка, который напоминает эффект ореола, наблюдаемый во время солнечного затмения, или короноподобный вид под электронным микроскопом [264].

На поверхности вируса имеются выступы гликопротеина  спайк (S) длиной около 20 нм, состоящие из двух субъединиц (S1 и S2). [6] Коронавирус использует свой белок S, основную мишень для нейтрализующих антител, для связывания со специфическими рецепторами и обеспечения слияния мембран и проникновения вируса. Это тримерный белок [264], состоящий из трех переплетенных цепей, имеющих идентичные аминокислотные последовательности, каждая из которых называется протомером.

Однако, протомеры не имеют идентичных трехмерных конформаций. Мономер тримерного белка S составляет примерно 180 кДа. [266] По своей структуре N- и С-концевые части S1 представляют собой два независимых домена: N-концевой домен (NTD) и С-концевой домен (CTD). В зависимости от вируса NTD или CTD могут действовать как рецептор-связывающий домен (RBD).

Коронавирусы также имеют мембрану (M), нуклеокапсид (N) и белки envelope (E), димер гемагглютинин-эстеразу (HE).



Другие патогенные для человека коронавирусы: SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-NL63, HCoV-OC43 и HCoV-229E. Среди них 229E и NL63  α-коронавирусы, а OC43 и HKU1  β-коронавирусы [257].


Геном SARS-CoV-2

Геном вируса покрыт белком N, образующим спиральный нуклеокапсид [262]. Геном, покрытый N-белком, заключен в липидную оболочку, а вирусная липидная оболочка усеяна вирусными белками [262, 263].



SARS-CoV-2 состоит как минимум из 14 ORF [231] (Open Reading Frames) общей длиной 29 903bp. [93] Его геном подобен SARS-CoV с порядком генов 5-ORF1ab-S-E-MN3. [93] Он также содержит РНК-зависимую РНК-полимеразу (RdRp). SARS-CoV-2 считается генетически более стабильным, чем SARS-CoV и MERS-CoV.

Однако, в публикации от 12 марта 2020 года сообщалось о том, что в геноме коронавируса SARS-CoV-2, обнаруженного у восьми госпитализированных пациентов в Сингапуре, зафиксирована делеция (потеря части генетического материала). [8] Известно, что с тех пор произошло много других мутаций.

2 большие ORF (Open Reading Frames) кодируют 2 полипротеина (pp1a и pp1b), которые после протеолитической активности дают начало 16 неструктурным белкам (nsp). Остальная часть состоит из вкраплений Open Reading Frames, кодирующих неструктурные и вспомогательные белки, которые не важны для репликации, но обладают иммуносупрессивной активностью. [231]

Комплекс репликации вирусной РНК состоит из неструктурных белков:

 nsp 12 (RdRp)

 nsp 7

 nsp8 (I/II).

Поскольку вирусы не могут производить свои собственные липиды, они используют липиды хозяина для репликации и морфогенеза [265]. Белок N играет решающую роль в фазе морфогенеза жизненного цикла вируса во время образования вириона [262].

Популяционно-генетический анализ 103 геномов SARS-CoV-2 показал что, по состоянию на начало 2020 года, вирус эволюционировал в два основных типа (L и S). Тип L (~70%) встречался чаще, чем тип S (~30%). Тип S эволюционно старше и менее агрессивен. [9] По состоянию на февраль 2023 года уже существует множество других штаммов.

Генетически, SARS-CoV-2 примерно на 79% похож с SARS-CoV и примерно на 50% с MERS-CoV. (Zhang et al, 2020, Kirtipal et al, 2020)

III. ШТАММЫ SARS-COV-2

Эволюция вируса была ожидаемой, и чем больше распространяется SARS-CoV-2, тем больше у него возможностей для развития и мутаций. Снижение передачи с помощью установленных и проверенных методов борьбы с болезнью, а также недопущение интродукции в популяции животных являются ключевыми аспектами глобальной стратегии по сокращению появления мутаций, которые имеют негативные последствия для общественного здравоохранения.

На Gisaid по состоянию на февраль 2023 г. доступны данные о более чем 4000 геномов SARS-CoV-2. [228] По состоянию на 3 февраля 2023 г. в GISAID загружено более 7 400 000 последовательностей Omicron SARS-CoV-2. [174]

Так, замещение D614G в феврале 2021 года увеличивает инфекционность вируса (Plante et al, 2020). Volz et al, 2021, опубликовал данные о том, что D614G ассоциировалось с более высокой вирусной нагрузкой и более молодым возрастом заболевших.

20 декабря 2020 года в Соединенном Королевстве был выделен штамм SARS-CoV-2 Альфа (ранее VUI 202012/01, изначально назван в СМИ «британским»). Основные мутации штамма: делеция 6970, делеция 144, N501Y, A570D, D614G, P681H, T716I, S982A, D1118H. Мутация N501Y произошла непосредственно в RBD.

Возможное происхождение штамма Альфа: длительное персистирование инфекции у иммунокомпрометированного пациента с возможным накоплением «escape mutations», либо вирус попал к животному, а от животного снова к человеку.


Ретроспективное когортное исследование (препринт, 2021) у людей с положительной реакцией на SARS-CoV-2 с помощью ОТ-ПЦР было проведено с использованием наборов медицинских данных в провинциях Онтарио и Альберта, Канада, которые были наиболее пострадавшими провинциями во время возобновления случаев заболевания в Канаде с февраля до мая 2021 года. За это время 30-дневные исходы для тех, кто был инфицирован VОС (n=37902), из которых 91% были инфицированы штаммом Alpha, показали более высокий риск смерти [скорректированное отношение шансов (aOR) 1,34 в Онтарио и 1,53 в Альберте] и госпитализации [aOR 1,57 в Онтарио и aOR 1,88 в Альберте] по сравнению с инфицированными не-VОС. [224]


В проспективном клиническом когортном исследовании госпитализированных и внебольничных случаев (n=1475), проведенном в период с 1 ноября 2020 года по 30 января 2021 года в Шотландии в рамках более крупного исследования в Соединенном Королевстве и опубликованном в качестве препринта, заражение альфа-штаммом было ассоциировано с повышенной клинической тяжестью [совокупный OR 1,40] по сравнению с инфекцией, не связанной с Alpha SARS-CoV-2. Кроме того, вирусная нагрузка в образцах, положительных на штамм Alpha, была ниже, чем в образцах с не-Alpha. [225]


Штамм Бета (ранее 501.V2, изначально назван в СМИ «южноафриканским») был впервые обнаружен в Южной Африке.


Также в начале января 2021 было известно о «нигерийском» штамме P681H. В мае 2021г. важные штаммы были переименованы литерами греческого алфавита. Хочется уточнить, что в период пандемии некорректно называть штаммы с привязкой к названию местности. Это вызывает стигматизацию населения.


Штамм Гамма (ранее Р.1) был впервые обнаружен в Бразилии в ноябре 2020 года.

Назад Дальше