Клеточные и молекулярные механизмы патогенеза иммуновоспалительных ревматических заболеваний - Саидов Марат Зиявдинович 10 стр.


63. Helming L., Gordon S. Molecular mediators of macrophage fusion. Trends Cell Biol., 2009, Vol. 19, no.5, pp.514522. doi: 10.1016/j.tcb.2009.07.005.

64. Hernandez-Molina G., Michel-Peregrina M., Hernandez-Ramirez D. F., Sanchez-Guerrero J., Llorente L. Chemokine saliva levels in patients with primary Sjogrens syndrome, associated Sjogrens syndrome, pre-clinical Sjogrens syndrome and systemic autoimmune diseases. Rheumatology, 2011, Vol. 50, no.7, pp.12881292. doi: 10.1093/rheumatology/ker019.

65. Herrmann M., Voll R. E., Zoller O. M., Hagenhofer M., Ponner B. B., Kalden J. R. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum.,1998, Vol.41, no.7, pp.:12411250. doi: 10.1002/1529- 0131(199807)41:7<1241::AID-ART15>3.0.CO;2-H.

66. Higashi-Kuwata N., Makino T., Inoue Y., Takeya M., Ihn H. Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma. Exp Dermatol., 2009, Vol. 18, no.8, pp.727729. doi: 10.1111/j.16000625.2008.00828.x.

67. Higgs B. W., Liu Z., White B., Zhu W., White W., Morehouse C.Yao Y.. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann. Rheum. Dis., 2011, Vol.70, no. 11, pp. 20292036. doi: 10.1136/ard.2011.150326.

68. HjelmstroÈm P. Lymphoid neogenesis de novo formation of lymphoid tissue in chronic inflammation through expression of homing chemokines. J. Leuk. Biol., 2001, Vol.69, pp.331339. doi: 10.1097/BOR.0b013e32835fd8eb.

69. HjelmstroÈm P., Fjell J., Nakagawa T., Sacca R., Cuff C. A., Ruddle N. H. Lymphoid tissue homing chemokines are expressed in chronic inflammation. Am. J. Pathol., 2000, Vol.156, no.4, pp.11331138. doi: 10.1016/S00029440(10)649814.

70. Horikawa S., Ishii Y., Hamashima T., Yamamoto S., Mori H., Fujimori T.Sasahara M.. PDGFRα plays a crucial role in connective tissue remodeling. Scientific RepoRts., 2015; 5:17948. doi: 10.1038/srep17948.

71. Humby F., Bombardieri M., Manzo A., Kelly S., Blades M. C., Kirkham B. Ectopic lymphoid structures support ongoing production of class- switched autoantibodies in rheumatoid synovium. PLoS Med. 2009; 6:e1. doi: 10.1371/journal.pmed.0060001.

72. Jara L. J., Medina. G., Saavedra M. A. Autoimmune manifestations of infections. Curr Opin. Rheumatol. 2018, Vol. 30, no.46, pp.373379. DOI:10.1097/BOR.0000000000000505.

73. Jego G., Palucka A. K., Blanck J. P., Chalouni C., Pascual V., Banchereau J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity, 2003, Vol. 19, no.2, pp.225234. doi: 10.1016/s10747613(03)002085.

74. Jenkins M. K., Khoruts A., Ingulli E., Mueller D. L., McSorley S. J., Reinhardt R., Itano A., Pape A. In vivo activation of antigen- specific CD4 T cells. Annu. Rev. Immunol., 2001, Vol.19, pp. 2345. doi: 10.1146/annurev.immunol.19.1.23.

75. Jesus A. A., Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes. Annu. Rev. Med., 2014, Vol. 65, pp.223244. doi: 10.1146/annurev-med-061512150641.

76. Jorch S., Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. NATURE MEDICINE, 2017, Vol. 23, no.3, pp. 279287. doi:10.1038/nm.4294.

77. Jurewicz М. М., Stern. L. G. Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics, 2019, Vol. 71, no.3, pp.171187. doi:10.1007/s002510181095-x.

78. Kang Y. M., Zhang X., Wagner U. G. Yang H., Beckenbaugh R. D., Kurtin P.JWeyand C. M. CD8 T Cells Are Required for the Formation of Ectopic Germinal Centers in Rheumatoid Synovitis. J. Exp. Med., 2002, Vol. 195, no.10, pp. 13251336. doi.org/10.1084%2Fjem.20011565.

79. Khandpur R., Carmona-Rivera C., Vivekanandan-Giri A., Gizinski A., Yalavarthi S., Knight J. S. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med., 2013; 5(178):178ra40. doi: 10.1126/scitranslmed.3005580.

80. Kiselyov A. et al. VEGF/VEGFR signaling as a target for inhibiting angiogenesis. Expert Opin. Investig. Drugs, 2007, Vol. 16, pp. 83107.

81. Klemperer P. The concept of collagen diseases. The American Journal of Pathology, 1950; Vol. XXVI, no. 4, pp. 505519.

82. Knecht, H., Saremaslani, P., Hedinger, C. Immunohistological findings in Hashimotos thyroiditis, focal lymphocytic thyroiditis and thyroiditis de Quervain. Virchows Arch., 1981; A 393, pp. 215231. https://sci-hub.do/10.1007/bf00431078.

83. Knight J. S., Carmona-Rivera C., Kaplan M. J. Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front Immunol., 2012, Vol. 3, pp.380. doi: 10.3389/fimmu.2012.00380. eCollection 2012.

84. Kobayashi K., Kaneda K., Kasama T. Immunopathogenesis of Delayed-Type Hypersensitivity. Microscopy Research and Technique, 2001, Vol. 53, no.4, pp. 241245. doi: 10.1002/jemt.1090.

85. Koch A. E. Angiogenesis: implications for rheumatoid arthritis. Arthritis Rheum., 1998, Vol. 41, no.6, pp.951962. doi:10.1002/15290131(199806)41:6<951::AID-ART2>3.0.CO;2-D.

86. Koelink P. J., Overbeek. S. A., Braber S., Henricks P. A., Roda M.A.Kraneveld A. D.. Collagen degradation and neutrophilic infiltration: a vicious circle in inflammatory bowel disease. Gut. 2014, Vol. 63, no.4, pp.578587. doi:10.1136/gutjnl-2012303252.

87. Kraan M. C., Haringman J. J., Post W. J., Versendaal J., Breedveld F. C., Tak P. P. Immunohistological analysis of synovial tissue for differential diagnosis in early arthritis. Rheumatology, 1999, Vol. 38, no.11, pp.10741080. doi: 10.1093/rheumatology/38.11.1074.

88. Krenn V., Souto-Carneiro M. M., Kim H. J., Berek C., Starostik P., Konig A. Histopathology and molecular pathology of synovial B-lymphocytes in rheumatoid arthritis. Histol. Histopathol., 2000, Vol. 15, pp. 791798. doi: 10.14670/HH-15.791.

89. Kroenke M. A., Eto D., Locci M., Cho M., Davidson T., Haddad E. K., Crotty S. Bcl6 and Maf cooperate to instruct human follicular helper CD4T cell differentiation. J Immunol., 2012, Vol. 188, no.8, pp.37343744. doi: 10.4049/jimmunol. 1103246.

90. Kuivaniemi H., Tromp G. Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases. Gene, 2019. Vol 707, pp. 151171 https://doi.org/10.1016/j.gene.2019.05.003.

91. Kunnumakkara A. B., Sailo B. L., Banik K., Harsha C., Prasad SAggarwal B. B. Chronic diseases, inflammation, and spices: how are they linked? J. Transl. Med., 2018; 16:14. doi: 10.1186/s1296701813812.

92. Lande R., Gregorio J., Facchinetti V., Chatterjee B., Wang Y. H., Homey B. Gillet M. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature, 2007, Vol. 449, pp. 564569. doi: 10.1038/nature06116.

93. Lau C. M., Broughton C., Tabor A. S., Akira S., Flavell R. A., Mamula MMarshak-Rothstein A. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med., 2005, Vol. 202, no.9, pp.11711177. doi: 10.1084/jem.20050630.

94. Leadbetter E. A., Rifkin I. R., Hohlbaum A. M., Beaudette B. C., Shlomchik M. J., Marshak-Rothstein A. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature, 2002, Vol. 416, pp.603607.

95. Liao A. P., Salajegheh M., Nazareno R., Kagan J. C., Jubin R. G. Greenberg S. A.. Interferon β is associated with type 1 interferon-inducible gene expression in dermatomyositis. Ann Rheum Dis., 2011, Vol. 70, no.5, pp.831836. doi: 10.1136/ard.2010.139949.

96. Loo J., Spittle D. A., Newnham M. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax Published Online First: 06 January 2021. doi: 10.1136/thoraxjnl-2020216243.

97. Ma W-T., Gao F., Gu K., Chen D-K. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front. Immunol., 2019; 10:1140. doi: 10.3389/fimmu.2019.01140.

98. Malmstrom V., Venalis P., Albrecht I. T cells in myositis. Arthritis Res. Ther., 2012; 14(6), 230. doi.org/10.1186/ar4116.

99. Mantovani A., Sozzani S., Locati M., Allavena P., Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol., 2002, Vol. 23, no.11, pp.549555. doi: 10.1016/s14714906(02)023025.

100. Manzo A., Bombardieri M., Humby F., Pitzalis C. Secondary and ectopic lymphoid tissue responses in rheumatoid arthritis: from inflammation to autoimmunity and tissue damage/remodeling. Immunol Rev., 2010, Vol. 233, pp.267285. doi: 10.1111/j.01052896.2009.00861.x.

101. Masters S. L., Simon A., Aksentijevich I., Kastner D. L. Horror Autoinflammaticus: The Molecular Pathophysiology of Autoinflammatory Disease. Annu. Rev. Immunol., 2009, Vol. 27, pp.621668. doi: 10.1146/annurev.immunol.25.022106.141627.

102. McNally A. K., Anderson J. M. Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am. J. of Pathology, 1995, Vol. 147, no.5, pp. 14871499.

103. McNally A. K., Jones J. A., Macewan S. R., Colton E., Anderson J. M. Vitronectin is a critical protein adhesion substrate for IL-4-induced foreign body giant cell formation. Journal of Biomedical Materials Research, 2008, Vol. 86, no. 2, pp. 535543. doi: 10.1002/jbm.a.31658.

104. Means T. K., Latz E., Hayashi F., Murali M. R., Golenbock D. T., Luster A. D. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Investig., 2005, Vol. 115, no. 2, pp. 407417. doi: 10.1172/JCI23025.

105. Miga A., Masters S., Gonzalez M., Noelle R. J. The role of CD40-CD154 interactions in the regulation of cell mediated immunity. Immunological Investigations, 2000, Vol.29, no 2, pp. 111114. doi: 10.3109/08820130009062292.

106. Miyabe Y., Lian, J., Miyabe, C., Luster, A. D. Chemokines in rheumatic diseases: pathogenic role and therapeutic implications. Nature Reviews Rheumatology, 2019, 15:73146. doi:10.1038/s4158401903236.

107. Moghaddas F., Masters S. L. Monogenic autoinflammatory diseases: cytokinopathies. Cytokine, 2015, Vol. 74, no.2, pp.237246. doi: 10.1016/j.cyto.2015.02.012.

108. Moore B. B., Keane M. P., Addison C. L., Arenberg D. A., Strieter R. M., CXC chemokine modulation of angiogenesis: the importance of balance between angiogenic and angiostatic members of the family. J. Invest. Med., 1998, Vol. 46, p. 113.

109. Murphy G., Knauper V., Atkinson S., Butler G., English W, Hutton M., Stracke J., Clark I. Matrix metalloproteinases in arthritic disease. Arthritis Res., 2002, 4(Suppl 3):S39S49. doi: 10.1186/ar572.

110. Murshid A., Gong J., Calderwood S. K. The role of heat shock proteins in antigen cross presentation. Front. Immunol., 2012, Vol.3, Article63. doi: 10.3389/fimmu.2012.00063. eCollection.

111. Nakhasi H. L., Ramanujam M., Atreya C. D., Hobman T. C., Lee N. Rubella virus glycoprotein interaction with the endoplasmic reticulum calreticulin and calnexin. Arch. Virol., 2001, Vol. 146, pp.114.

112. Nanki T., Hayashida K., El-Gabalawy H., Suson S., Shi K., Girschick H. J., Yavus S., Lipsky P. E. Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T-cell accumulation in rheumatoid arthritis synovium. J Immunol., 2000, Vol. 165, no. 11, pp. 65906598. doi: 10.4049/jimmunol.165.11.6590.

113. Nanki T., Shimaoka T., Hayashida K., Taniguchi K., Yonehara S., Miyasaka N.. Pathogenic role of the CXCL16-CXCR6 pathway in rheumatoid arthritis. Arthritis Rheum., 2005, Vol. 52, no.10, pp. 30043014. doi: 10.1002/art.21301.

114. Ohtani H. Granuloma cells in chronic inflammation express CD205 (DEC205) antigen and harbor proliferating T lymphocytes: Similarity to antigen-presenting cells. Pathology International, 2013, Vol. 63, pp. 8593. doi:10.1111/pin.12036.

115. Orr C., Najm A., Biniecka M., McGarry T., Ng C. T., Young F., Fearon U., Veale D. J.. Synovial immunophenotype and anti-citrullinated peptide antibodies in rheumatoid arthritis patients: relationship to treatment response and radiologic prognosis. Arthr. Rheumatol., 2017, Vol. 69, no. 11, pp.21142123. doi: 10.1002/art. 40218.

116. Pagan A. J., Ramakrishnan L. The Formation and Function of Granulomas. Annu. Rev. Immunol., 2018, 36:23.123.27. https://doi.org/10.1146/annurev- immunol- 032712- 100022.

117. Page C., Francois C., Goeb V., Duverlie G. Human parvovirus B19 and autoimmune diseases. Review of the literature and pathophysiological hypotheses. J. Clin. Virol., 2015, Vol. 72, pp.6974.

118. Pap T., Shigeyama Y., Kuchen S., Fernihough J. K., Simmen B., Gay R. E. Differential expression pattern of membrane-type matrix metalloproteinases in rheumatoid arthritis. Arthritis Rheum., 2000, Vol. 43, no. 6, pp.12261232. doi: 10.1002/15290131(200006)43:6<1226::AID-ANR5>3.0.CO;24.

119. Patel D. D., Zachariah J. P., Whichard L. P. CXCR3 and CCR5 ligands in the rheumatoid arthritis synovium. Clin. Immunol., 2001, Vol. 98, no.1, pp. 3945. doi: 10.1006/clim.2000.4957.

120. Pisetsky D. S., Erlandsson-Harris H., Andersson U. High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Research & Therapy, 2008, 10:209. doi:10.1186/ar2440.

121. Pitzalis C., Kelly S., Humby F. New learnings on the pathophysiology of RA from synovial biopsies. Curr Opin Rheumatol., 2013, Vol. 25, no.3, pp. 334344. doi: 10.1097/BOR.0b013e32835fd8eb.

122. Randen, I., Mellbye, O. J., Forre, O., Natvig, J. B. The identification of germinal centres and follicular dendritic cell networks in rheumatoid synovial tissue. Scand. J. Immunol., 1995, Vol.41, no. 5, pp. 481486. doi: 10.1111/j.13653083.1995.tb03596.x.

123. Raychaudhuri S., Sandor C., Stahl E. A., Freudenberg J., Lee H.S.de Bakker P. I. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet., 2012, Vol. 44, no.3, pp.291296. doi: 10.1038/ng.1076.

124. Reglero-Real N., Colom B., Bodkin J. V., Nourshargh S. et al. Endothelial Cell Junctional Adhesion Molecules: Role and Regulation of Expression in Inflammation. Arterioscler Thromb Vasc Biol., 2016, Vol. 36, no.10, pp. 20482057. doi: 10.1161/ATVBAHA.116.307610.

125. Rizzo C., Grasso G., Castaniti G., Ciccia F., Guggino G. Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation. Vaccines, 2020, Vol. 8, no.2, pp.123. doi:10.3390/vaccines8020272.

126. Rock K. L., Kono H. The Inflammatory Response to Cell Death. Annu. Rev. Pathol. Mech. Dis., 2008, Vol. 3, pp.99126. doi:10.1146/annurev.pathmechdis.3.121806.151456.

127. Rogers G. L., Shirley J. L., Zolotukhin I., Kumar S.P, Sherman A., Perrin G.Q..Herzog R. W.. Plasmacytoid and conventional dendritic cells cooperate in cross-priming AAV capsid-specific CD8+ T cells. Blood, 2017, Vol. 129, no.24 pp.31843195. doi: 10.1182/blood-201611751040.

128. Romero V., Fert-Bober J., Nigrovic P. A., Darrah E., Haque U. J., Lee D. M., van Eyk J., Rosen A., Andrate F. Immune-mediated pore- forming pathways induce cellular hypercitrullination and generate citrullinated autoantigens in rheumatoid arthritis. Sci. Transl. Med., 2013, Vol. 5, 209ra150. doi: 10.1126/scitranslmed.3006869.

129. Rosen A., Casciola-Rosen L. Autoantigens as Partners in Initiation and Propagation of Autoimmune Rheumatic Diseases. Annu. Rev. Immunol., 2016, 34:15.115.26. doi: 10.1146/annurev-immunol-032414112205.

130. Rossi D., Zlotnik A. The biology of chemokines and their receptors. Annu. Rev. Immunol., 2000, Vol. 18, pp.217242. doi: 10.1146/annurev.immunol.18.1.217.

131. Rot A., Ulrich H. von Andrian. Chemokines in innate and adaptive host defense: Basic Chemokinese Grammar for Immune Cells. Annu. Rev. Immunol., 2004, Vol. 22, pp. 891928. doi: 10.1146/annurev.immunol.22.012703.104543.

132. Salomonsson S., Larsson P., Tengner P., Mellquist E., Hjelmstrom P., Wahren-Herlenius M. Expression of the B Cell-Attracting Chemokine CXCL13 in the Target Organ and Autoantibody Production Ectopic Lymphoid Tissue in the Chronic Inflammatory Disease SjoÈgren's Syndrome. Scand. J. Immunol., 2002, Vol. 55, pp. 336342. doi: 10.1046/j.13653083.2002.01058.x.

Назад Дальше