В слоях Интернета одной из наиболее распространенных единиц измерения является сетевой пакет основная единица данных, отправляемая из одного пункта назначения и доставляемая в другой. В компании Amazon основной единицей измерения является коричневая картонная коробка знакомое нам транспортное сооружение, украшенное изогнутой стрелкой, имитирующей человеческую улыбку. Каждый сетевой пакет имеет временную метку, известную как период жизни. Данные должны попасть в пункт назначения до его истечения. В Amazon картонная коробка также имеет время жизни, определяемое требованиями клиента к доставке. Если коробка опаздывает, это влияет на бренд Amazon и, в конечном счете, на его прибыль. Именно по этой причине компания уделяет огромное внимание алгоритму машинного обучения, который настраивается на данные о наилучшем размере, весе и прочности гофрированных коробок и бумажных конвертов. Очевидно, без иронии, алгоритм называется «матрицей»[115]. Каждый раз, когда человек сообщает о поврежденном товаре, это становится точкой отсчета данных о том, какую коробку следует использовать в будущем. В следующий раз, когда этот же товар будет ждать отправления, матрица автоматически назначит ему новый тип коробки без участия человека. Такой подход предотвращает поломки, экономит время и увеличивает прибыль. Однако работники вынуждены постоянно адаптироваться, что, безусловно, затрудняет применение их знаний на практике или привыкание к работе.
Контроль за временем является постоянной темой логистической империи Amazon, а сотрудники работают в соответствии с каденциями вычислительной логики. Amazon второй по величине частный работодатель в Америке, и многие компании стремятся подражать его подходу. Многие крупные корпорации вкладывают значительные средства в автоматизированные системы в попытке получить все большие объемы труда от меньшего числа работников. Логика эффективности, наблюдения и автоматизации сходятся в нынешнем повороте к вычислительным подходам к управлению трудом. Гибридные человеко-роботизированные распределительные склады Amazon являются ключевым местом для понимания компромиссов, которые происходят в этом стремлении к автоматизированной эффективности. Отсюда мы можем начать рассматривать вопрос о том, как труд, капитал и время переплетаются в системах ИИ.
Вместо того чтобы обсуждать, заменят ли людей роботы, в этой главе я сосредоточусь на том, как меняется опыт работы в связи с усилением наблюдения, алгоритмической оценки и модуляции времени. Другими словами, насколько часто люди прибегают к помощи роботов и как это сказывается на роли труда. Многие формы труда окутаны термином «искусственный интеллект», скрывая тот факт, что люди зачастую выполняют механические задачи, поддерживая тем самым впечатление, будто эту работу способны сделать машины. Тем не менее, крупномасштабные вычисления уже глубоко укоренились в процессе труда и основаны на эксплуатации человеческих тел.
Если мы хотим понять будущее работы в контексте искусственного интеллекта, нам нужно начать с понимания прошлого и настоящего опыта работников. Подходы к максимизации извлечения ценности из сотрудников варьируются от переработки классических методов, использовавшихся на заводах Генри Форда, до ряда инструментов машинного обучения, предназначенных для повышения детализации отслеживания, стимулирования и оценки. В этой главе представлена история географии труда в прошлом и настоящем, от инспекционных домов Самуэля Бентама до теорий управления временем Чарльза Бэббиджа и микроменеджмента человеческого тела Фредерика Уинслоу Тейлора. Попутно мы увидим, каким образом ИИ строится на основе человеческих усилий (среди прочего), таких как работа в коллективе, приватизация времени и, казалось бы, бесконечная работа по перемещению, подъему и упорядочиванию коробок. Из истории механизированной фабрики возникла модель, которая ценит повышенное соответствие, стандартизацию и совместимость как для продуктов и процессов, так и для людей.
Предыстория автоматизированного рабочего места
Автоматизация рабочих пространств, хотя о ней часто рассказывают как о будущем, уже давно стала опытом современной работы. Производственный конвейер с его акцентом на последовательные и стандартизированные единицы продукции имеет аналоги в сфере услуг, от розничной торговли до ресторанов. С 1980-х годов труд секретаря все больше автоматизируется, и теперь его имитируют высоко феминизированные помощники ИИ, такие как Siri, Cortana и Alexa[116]. Так называемые офисные работники, те самые «белые воротнички», которым, как предполагалось, в меньшей степени угрожает автоматизация, оказываются все больше подвержены наблюдению, систематизации процессов и разрушению различий между работой и досугом (хотя женщины и без того редко испытывали четкие различия, как показали феминистские теоретики труда, такие как Сильвия Федеричи и Мелисса Грегг)[117]. Как оказалось, адаптироваться пришлось всем отраслям, чтобы их можно было интерпретировать и понимать системами, основанными на программном обеспечении[118].
Общим рефреном расширения систем искусственного интеллекта и автоматизации процессов является то, что мы живем во времена выгодного сотрудничества человека и искусственного интеллекта. Но это сотрудничество не является справедливым. Условия основаны на значительной асимметрии власти есть ли вообще выбор не сотрудничать с алгоритмическими системами? Когда компания внедряет новую платформу ИИ, работникам редко разрешают отказаться от сотрудничества. Это не столько сотрудничество, сколько принуждение, когда от работников ожидается, что они будут переквалифицироваться, идти в ногу со временем и беспрекословно принимать каждую новую техническую разработку.
Вторжение ИИ на рабочие места следует понимать не как радикальный отход от устоявшихся форм, а как возвращение к старым практикам эксплуатации промышленного труда, которые прочно утвердились в 1890-х годах и в начале XX века. В то время фабричный труд уже рассматривался в контексте машин, а задачи все больше подразделялись на более мелкие действия, требующие минимальных навыков, но максимального напряжения сил. Действительно, нынешнее расширение автоматизации продолжает более широкую историческую динамику, присущую промышленному капитализму. С момента появления первых фабрик рабочие сталкивались с все более мощными инструментами, машинами и электронными системами, которые играют роль в изменении методов управления трудом и в передаче большей ценности работодателям. Сейчас мы наблюдаем новые припевы на старую тему. Решающее отличие заключается лишь в том, что теперь работодатели наблюдают, оценивают и регулируют части рабочего цикла и физические данные вплоть до последнего микродвижения, которые раньше были для них недоступны.
Существует множество предысторий ИИ в рабочем пространстве; одна из них широкомасштабная автоматизация общих видов производственной деятельности во время промышленной революции. В своем труде «Богатства народов» политэкономист XVIII века Адам Смит впервые указал на разделение и подразделение производственных задач как на основу повышения производительности и роста механизации[119]. Он заметил, что, определив и проанализировав различные этапы производства любого изделия, можно разделить их на все более мелкие шаги. Так продукт, который раньше полностью изготавливался опытными ремесленниками, теперь может быть создан командой рабочих более низкой квалификации, оснащенных инструментами, специально созданными для выполнения конкретной задачи. Таким образом можно было значительно увеличить объем производства на фабрике без эквивалентного увеличения стоимости рабочей силы.
Развитие механизации имело большое значение, но только в сочетании с растущим изобилием энергии, получаемой из ископаемого топлива, оно смогло привести к массовому росту производственных мощностей индустриальных обществ. Этот рост производства происходил одновременно с серьезной трансформацией роли труда по отношению к машинам. Изначально задуманные как трудосберегающие устройства, фабричные машины должны были помогать рабочим в повседневной деятельности, но быстро стали центром производственной активности, определяя скорость и характер работы. Паровые двигатели, например, работающие на угле и нефти, приводили в движение непрерывные механические действия, которые влияли на темп работы на фабрике. Работа перестала восприниматься как продукт человеческого труда и приобрела все более машинный характер, а рабочие уже начали приспосабливаться к потребностям машины и ее особым ритмам и характеристикам. Опираясь на Смита, Карл Маркс еще в 1848 году отметил, что автоматизация абстрагирует труд от производства готовых предметов и превращает рабочего в «придаток машины»[120].
Интеграция человеческого труда с механическим оказалась настолько глубокой, что ранние промышленники стали рассматривать своих работников как сырье, которым можно управлять и контролировать, как любым другим ресурсом. Владельцы фабрик, используя местное политическое влияние и оплачиваемую силу, стремились направлять и ограничивать передвижение рабочих в пределах фабричных городов, иногда даже не позволяя им эмигрировать в менее механизированные регионы мира[121].
Все это также означало усиление контроля над временем. Историк Э. П. Томпсон в своем основополагающем эссе исследует, как промышленная революция привела к большей синхронизации рабочего процесса и более строгой дисциплине[122]. Переход к промышленному капитализму принес с собой разделение труда, надзор, часы и табели технологии, которые также повлияли на восприятие времени людьми. Не обошлось и без вклада культуры: в восемнадцатом и девятнадцатом веках пропаганда трудолюбия велась в форме памфлетов и эссе о важности дисциплины, и проповедей о достоинствах раннего подъема и усердной работы до позднего вечера[123]. Использование времени стало рассматриваться как в моральных, так и в экономических терминах: понимаемое как валюта, время могло быть потрачено с умом или же впустую. Но чем более жесткие временные рамки устанавливались в цехах и на фабриках, тем больше рабочие начинали сопротивляться, борясь за само время. К 1800-м годам рабочие движения активно выступали за сокращение рабочего дня, который мог длиться до шестнадцати часов. Вот так само время стало ключевым объектом борьбы.
Поддержание эффективной и дисциплинированной рабочей силы на первых фабриках потребовало новых систем наблюдения и контроля. И вот одним из таких изобретений на заре промышленного производства стал наблюдательный корпус круговая конструкция, где все рабочие фабрики располагались внизу, а начальство работало на возвышенности в центре, чтобы иметь возможность следить за рабочими. Разработанная в 1780-х годах в России английским военно-морским инженером Сэмюэлем Бентамом, находившимся на службе у князя Потемкина, эта система позволяла опытным руководителям следить за своими необученными подчиненными в основном русскими крестьянами, которых Потемкин передал Бентаму, на предмет выявления признаков некачественной работы. Кроме того, Бентам смог следить за надсмотрщиками на предмет признаков плохой дисциплины. Надсмотрщики, в основном мастера-кораблестроители, нанятые из Англии, вызывали у Бентама сильное раздражение своей склонностью к выпивке и мелким разногласиям друг с другом. «Утро за утром меня занимают главным образом споры между моими офицерами», жаловался Бентам[124]. По мере того, как его разочарование росло, он приступил к перепланировке, которая максимально увеличила его способность следить за ними и за системой в целом. После визита своего старшего брата, философа-утилитариста Джереми Бентама, инспекционный корпус Сэмюэля стал источником вдохновения для знаменитого паноптикона проекта типовой тюрьмы с центральной сторожевой башней, с которой охранники могли наблюдать за заключенными в камерах[125].
Со времен книги Мишеля Фуко «Надзирать и наказывать» стало привычным считать тюрьму отправной точкой современного наблюдения, а старшего Бентама ее идейным родоначальником. На самом же деле тюрьма обязана своим происхождением работе младшего Бентама в контексте раннего производственного предприятия[126]. Паноптикон зародился как механизм рабочего места задолго до того, как был концептуализирован для тюрем.
Хотя работа Сэмюэля Бентама над инспекционным корпусом в значительной степени исчезла из нашей коллективной памяти, история, лежащая в ее основе, остается частью общего лексикона. Корпус являлся частью стратегии, скоординированной работодателем Бентама, князем Потемкиным, который хотел добиться расположения при дворе Екатерины Великой, продемонстрировав возможности модернизации сельской России и превращения крестьянства в современную рабочую силу. Инспекционный дом был построен для того, чтобы служить зрелищем для приезжих высокопоставленных лиц и финансистов, подобно так называемым потемкинским деревням, которые были не более чем украшенными фасадами, призванными отвлечь внимание наблюдателей от бедных сельских пейзажей, скрытых от глаз.
И это только одна генеалогия. Многие другие истории труда сформировали подобные практики наблюдения и контроля. Плантационные колонии Америки использовали принудительный труд для выращивания таких товарных культур, как сахар, а рабовладельцы зависели от систем постоянного наблюдения. Как описывает Николас Мирзоефф в книге «Право смотреть», центральную роль в экономике плантаций играл надсмотрщик, который следил за производственным процессом на колониальной плантации рабов. И этот надзор означал упорядочивание работы в рамках системы крайнего насилия[127]. Как описал один плантатор в 1814 году, роль надсмотрщика заключалась в том, чтобы «ни на мгновение не оставлять раба в бездействии; он следит за производством сахара, ни на секунду не покидая рабочее место»[128]. Этот режим также опирался на подкуп некоторых рабов едой и одеждой, чтобы привлечь их к расширенной сети наблюдения и поддерживать дисциплину и скорость работы в моменты отсутствия надсмотрщика[129].
В наши дни роль надзора возложена в первую очередь на технологии мониторинга. Управленческий класс использует широкий спектр технологий для наблюдения за сотрудниками, включая отслеживание их передвижений с помощью приложений, анализ лент в социальных сетях, сравнение шаблонов ответов на электронные письма и бронирования встреч, а также стимулирование различными предложениями, чтобы заставить их работать быстрее и эффективнее. Данные о сотрудниках используются для составления прогнозов о том, кто с наибольшей вероятностью добьется успеха (в соответствии с узкими, поддающимися количественной оценке параметрами), кто может отклоняться от целей компании, а кто способен организовывать других работников. Некоторые из них используют методы машинного обучения, а другие представляют собой более простые алгоритмические системы. По мере распространения искусственного интеллекта в производственных помещениях многие базовые системы мониторинга и слежения расширяются за счет новых прогностических возможностей, превращаясь в более инвазивные механизмы управления работниками, контроля активов и извлечения ценности.