Атлас искусственного интеллекта: руководство для будущего - Захватова Ольга С. 8 стр.


Потемкинский ИИ и интернет-площадка Mechanical Turk

Один из менее признанных фактов об искусственном интеллекте это количество низкооплачиваемых работников, которые должны помогать создавать, поддерживать и тестировать системы ИИ. Этот невидимый труд принимает различные формы: работа в цепочке поставок, краудворкинг по требованию и традиционные должности в сфере услуг. Эксплуатационные формы труда существуют на всех этапах создания ИИ, начиная с горнодобывающего сектора, где ведется добыча и транспортировка ресурсов для создания основной инфраструктуры систем ИИ, и заканчивая программной частью, где распределенные рабочие силы получают копейки за микрозадачу. Мэри Грей и Сид Сури называют такой скрытый труд «призрачной работой»[130]. Лилли Ирани называет его «автоматизацией, подпитываемой человеком»[131]. Эти ученые обратили внимание на опыт краудворкеров или микроработников, которые выполняют повторяющиеся цифровые задачи, лежащие в основе систем ИИ, такие как маркировка тысяч часов учебных данных и проверка подозрительного или вредоносного контента. Рабочие выполняют повторяющиеся задачи, которые поддерживают утверждения о волшебстве ИИ, однако они редко получают похвалу за то, что заставляют системы функционировать[132].

Хотя этот труд необходим для поддержания систем ИИ, он в большинстве случаев очень низко оплачивается. В ходе исследования, проведенного Международной организацией труда ООН, было опрошено 3500 краудворкеров из 75 стран, которые регулярно предлагают свой труд на популярных платформах для выполнения заданий, таких как Amazon Mechanical Turk, Figure Eight, Microworkers и Clickworker. Отчет показал, что значительное число людей получали ниже минимальной заработной платы, даже несмотря на то, что большинство респондентов являлись высокообразованными гражданами, часто со специализацией в области науки и техники[133]. Аналогичным образом, те, кто занимается модерацией контента оценивает видео на предмет насилия или нецензурной лексики также получают низкую зарплату. Как показали такие исследователи СМИ, как Сара Робертс и Тарлетон Гиллеспи, подобная работа способна оставить после себя длительные психологические травмы[134].

Между тем, без этой работы системы ИИ не будут функционировать. Техническое сообщество исследователей ИИ полагается на дешевый труд людей для решения многих задач, которые не могут быть выполнены машинами. В период с 2008 по 2016 год термин «краудсорсинг» появился менее чем в тысяче научных статей и достиг более чем двадцати тысяч что вполне логично, учитывая, что в 2005 году запустили Mechanical Turk. Но в тот же период времени почти не обсуждалось, какие этические вопросы могут возникнуть, если полагаться на рабочую силу, которая получает гораздо ниже минимальной заработной платы[135].

Конечно, существуют серьезные причины игнорировать зависимость от низкооплачиваемой рабочей силы. Вся работа, которую выполняют люди,  от маркировки изображений для систем компьютерного зрения до тестирования правильности результатов работы алгоритма,  позволяет совершенствовать системы ИИ гораздо быстрее и дешевле, особенно если сравнивать с оплатой труда студентов за выполнение таких же задач (как это было принято раньше). По этой причине данный вопрос обычно игнорируется, и, как заметила одна исследовательская группа, использующая краудворкинг, клиенты, использующие эти платформы, «ожидают дешевого выполнения труда, как будто платформа это не интерфейс для работающих людей, а огромный компьютер без затрат на проживание»[136]. Другими словами, клиенты относятся к человеческим работникам как к машинам, потому что признание их работы и справедливое вознаграждение за нее сделают ИИ более дорогим и менее «эффективным».

Иногда работников напрямую просят притвориться системой искусственного интеллекта. Компания x.ai, создающая цифровой персональный помощник, утверждала, что ИИ-агент по имени Эми может «волшебным образом планировать встречи» и выполнять множество повседневных задач. Но подробное расследование Bloomberg, проведенное журналисткой Эллен Хуэт, показало, что это вовсе не искусственный интеллект. «Эми» тщательно проверялась и переписывалась командой контрактников, работавших по многу смен. Аналогичным образом, личный помощник Facebook, M, полагался на регулярное вмешательство человека со стороны группы работников, которым платили за проверку и редактирование каждого сообщения[137].

Имитация ИИ изнурительная работа. Сотрудники x.ai иногда работали по четырнадцать часов в смену, аннотируя электронные письма, чтобы поддерживать иллюзию того, что сервис автоматизирован и функционирует круглосуточно. Они не могли уйти в конце ночи, пока не заканчивались очереди писем. «Я уходил, чувствуя полное оцепенение и отсутствие каких-либо эмоций»,  рассказал Хуэт, один из сотрудников в интервью[138].

Все это можно рассматривать как своего рода «потемкинский» ИИ не более чем фасады, созданные для демонстрации инвесторам и доверчивым СМИ внешнего вида автоматизированной системы, которая на самом деле опирается на человеческий труд[139]. При благожелательном прочтении эти фасады являются иллюстрацией того, на что система может быть способна при полной реализации, или «минимально жизнеспособным продуктом», созданным для демонстрации концепции. При менее благосклонном прочтении «потемкинские» системы ИИ это форма обмана, совершаемого поставщиками технологий, стремящимися заявить о себе в прибыльном технологическом пространстве. Но до тех пор, пока не появится другой способ создания крупномасштабного ИИ, не требующий длительной работы людей за занавесом, это основная логика работы ИИ.

Писательница Астра Тейлор назвала перепродажу высокотехнологичных систем, которые на самом деле не автоматизированы, обманом[140]. Кажется, что автоматизированные системы делают работу, которую раньше выполняли люди, но на самом деле система просто координирует работу человека в фоновом режиме. Тейлор приводит примеры киосков самообслуживания в ресторанах быстрого питания и систем самостоятельной кассы в супермаркетах как мест, где труд работника, казалось бы, заменен автоматизированной системой, но на самом деле он просто перенесен с оплачиваемого работника на клиента. Между тем, многие онлайн-системы, принимающие на первый взгляд автоматизированные решения, такие как удаление дублирующихся записей или оскорбительного контента, на самом деле обслуживаются людьми, работающими из дома над бесконечными очередями рутинных задач[141]. Подобно потемкинским декоративным деревням и образцовым мастерским, многие ценные автоматизированные системы включают в себя комбинацию низкооплачиваемых цифровых рабочих и потребителей, выполняющих бесплатные задачи для обеспечения функционирования систем. Тем временем компании стремятся убедить инвесторов и общественность в том, что работу выполняют умные машины.

Что же стоит на кону такого искусства? Истинные трудозатраты на ИИ постоянно преуменьшаются и замалчиваются, но силы, движущие этим представлением, лежат глубже, чем просто маркетинговый трюк. Это часть традиций эксплуатации и увольнения, когда люди должны выполнять более утомительную и повторяющуюся работу, чтобы заполнить автоматизированные системы. Однако этот подход может масштабироваться, обеспечивая снижение затрат и увеличение прибыли, при этом скрывая, насколько он зависит от удаленных работников, получающих прожиточный минимум и перекладывающих на потребителей дополнительные задачи по обслуживанию или проверке ошибок.

Ложная автоматизация не заменяет напрямую человеческий труд, скорее, она перемещает и рассредотачивает его в пространстве и времени, при этом усиливая разрыв между трудом и стоимостью, и тем самым выполняя идеологическую функцию. Работники, отчужденные от результатов своего труда и отделенные от других людей, выполняющих ту же задачу, легче подвергаются эксплуатации со стороны работодателей. Об этом свидетельствует крайне низкий уровень компенсации, которую получают краудворкеры по всему миру[142]. Они сталкиваются с реальным фактом, что их труд взаимозаменяем любым из тысяч других сотрудников, конкурирующих с ними за работу на платформах. В любой момент их может заменить краудворкер или, возможно, более автоматизированная система.

В 1770 году венгерский изобретатель Вольфганг фон Кемпелен сконструировал сложный механический автомат. Он построил шкаф из дерева с часовым механизмом, внутри которого прятался человек. Механический шахматист, как считали другие, отлично играл и все время выигрывал. Необычное устройство впервые было продемонстрировано при дворе императрицы Марии Терезии Австрийской, после чего его начали приглашать сановники и министры правительства, все из которых были абсолютно убеждены, что это разумный автомат. Реалистичная машина носила тюрбан, широкие штаны и отороченный мехом халат, чтобы создать впечатление «восточного колдуна»[143]. Этот расистский облик сигнализировал об экзотической непохожести, в то время, когда элиты Вены пили турецкий кофе и одевали своих слуг в турецкие костюмы[144]. Он стал известен как Механический Турок (Mechanical Turk). Однако, как оказалось, шахматный автомат являлся всего лишь искусной иллюзией: во внутреннем отсеке прятался умелый игрок, незаметно управлявший машиной.

Спустя 250 лет эта мистификация продолжает жить. Компания Amazon решила назвать свою краудсорсинговую платформу, основанную на микроплатежах, «Amazon Mechanical Turk», несмотря на ассоциации с расизмом и обманом. На платформе Amazon реальные работники остаются вне поля зрения в угоду иллюзии, что системы искусственного интеллекта автономны и разумны[145]. Первоначальная мотивация Amazon для создания Mechanical Turk возникла из-за неудач ее собственных систем искусственного интеллекта, которые не могли адекватно обнаружить дублирующие страницы товаров на розничном сайте. После ряда тщетных и дорогостоящих попыток решить эту проблему инженеры проекта привлекли людей, чтобы заполнить пробелы в своих оптимизированных системах[146]. Теперь Mechanical Turk связывает предприятия с невидимой и анонимной массой работников, которые борются за возможность поработать над серией микрозадач. Mechanical Turk это массовая распределенная мастерская, где люди имитируют и улучшают системы искусственного интеллекта, проверяя и корректируя алгоритмические процессы. Это то, что глава Amazon Джефф Безос нагло называет «искусственным ИИ»[147].

Такие примеры потемкинского ИИ встречаются повсюду. Некоторые из них непосредственно видны: когда мы замечаем на дорогах один из современных самоуправляемых автомобилей, мы также видим человека-оператора на водительском месте, готового взять управление машиной на себя при первых признаках неисправности. Другие менее заметны, например, когда мы взаимодействуем с веб-интерфейсом чата. Мы имеем дело только с фасадами, скрывающими их внутреннюю работу, призванную скрыть различные комбинации машинного и человеческого труда в каждом взаимодействии. Мы не знаем, получаем ли мы ответ от самой системы или от человека-оператора, которому заплатили за ответ от ее имени.

Парадокс, с которым сталкивались многие из нас, заключается в том, что якобы для подтверждения подлинной человеческой личности при чтении веб-сайта нам необходимо убедить в этом систему reCAPTCHA компании Google. Поэтому мы послушно выбираем несколько квадратиков с номерами улиц, машин или домов. Мы бесплатно обучаем алгоритмы распознавания образов Google. И снова миф о доступности и эффективности ИИ зависит от слоев эксплуатации, включая использование массового неоплачиваемого труда для тонкой настройки систем ИИ самых богатых компаний на Земле.

Современные формы искусственного интеллекта не являются ни искусственными, ни интеллектуальными. Мы можем и должны говорить о тяжелом физическом труде шахтеров, труде на конвейере, кибернетическом труде в когнитивных потогонных цехах программистов-аутсорсеров, о низкооплачиваемом краудсорсинговом труде работников Mechanical Turk и неоплачиваемом нематериальном труде повседневных пользователей. Это те места, где мы видим, как планетарные вычисления зависят от эксплуатации людей по всей цепочке его добычи.

Концепция поточной линии и автоматизации рабочих мест: Бэббидж, Форд и Тейлор

Чарльз Бэббидж хорошо известен как изобретатель первого механического компьютера. В 1820-х годах он разработал идею дифференциального двигателя механической вычислительной машины, предназначенной для составления математических и астрономических таблиц. К 1830-м годам он разработал концептуальный проект аналитического двигателя, программируемого механического компьютера общего назначения с системой перфокарт для подачи инструкций[148].

Бэббидж также проявлял большой интерес к либеральной социальной теории и много писал о природе труда сочетание его интересов в области вычислений и автоматизации работы. Вслед за Адамом Смитом он отметил разделение труда как средство рационализации фабричной работы и повышения эффективности. Однако он пошел дальше, утверждая, что промышленную корпорацию можно рассматривать как аналог вычислительной системы. Как и компьютер, она включает в себя множество специализированных подразделений, выполняющих определенные задачи. Все они координируются для производства определенного объема работы, но при этом трудоемкость конечного продукта остается практически незаметной для процесса в целом.

В своих более спекулятивных работах Бэббидж представлял себе идеальные потоки работы, проходящие через систему, которую можно представить в виде таблиц данных и отслеживать с помощью шагомеров и повторяющихся механизмов[149]. По его мнению, благодаря сочетанию вычислений, наблюдения и трудовой дисциплины можно будет обеспечить все более высокую степень эффективности и контроля качества[150]. Это было странное пророческое видение. Только в последние годы, с внедрением искусственного интеллекта в рабочем пространстве, необычные цели Бэббиджа вычисления и автоматизация труда стали возможны в масштабах страны.

Экономическая мысль Бэббиджа развивалась по аналогии с экономикой Смита, но отличалась от нее в одном важном аспекте. Для Смита экономическая ценность объекта понималась в зависимости от стоимости труда, необходимого для его производства. В представлении Бэббиджа, однако, стоимость фабрики проистекала из инвестиций в разработку производственного процесса, а не из рабочей силы сотрудников. Настоящей инновацией являлся логистический процесс, а рабочие просто выполняли поставленные перед ними задачи и управляли машинами в соответствии с инструкциями.

По мнению Бэббиджа, роль рабочей силы в цепочке создания стоимости в основном негативная: сотрудники могли не выполнить задачи в срок, предписанный высокоточными станками, на которых они работали, будь то из-за плохой дисциплины, травм, прогулов или сопротивления. Как отмечает историк Саймон Шаффер, «Бэббидж рассматривал фабрики как совершенные двигатели, а вычислительные машины как идеальные компьютеры. Рабочая сила могла стать источником проблем, но точно не источником ценности»[151]. Фабрика задумывалась как рациональная вычислительная машина с единственным недостатком: хрупкой и ненадежной человеческой рабочей силой.

Назад Дальше