Скорость, масса, энергия. Физические основы хоккея - Каменских Светлана 3 стр.


Впрочем, давай оставим споры историкам и болельщикам. А сами лучше подумаем вот о чем  как наши знания о трении могут помочь нам в реальной игре или тренировке? Ну, например, мы теперь точно знаем, что перед матчем нужно как следует наточить коньки  чтобы уменьшить трение скольжения, но сохранить хорошее сцепление при торможении и маневрировании. Или что шайбу лучше бросать с «подкруткой», закручивая ее  так она дальше пролетит за счет меньшего трения качения. Вроде бы мелочи, а в игре могут стать решающими!

Ну что, друг мой, не утомил ли я тебя своими рассуждениями о скользком и липком? Надеюсь, теперь ты будешь смотреть на лед не просто как на площадку для игры, а как на настоящий физический полигон, где в каждый момент времени разыгрываются маленькие драмы притяжения и отталкивания, скольжения и сцепления. Поверь, если однажды начнешь замечать эти нюансы  хоккей для тебя заиграет новыми красками!

Ну а мы с тобой на этом пока остановимся. Впереди у нас еще много интересного  и про аэродинамику шайбы, и про упругость клюшек, и даже про термодинамику ледовой арены. Но сегодня мы сделали большой шаг  от абстрактной теории к реальным хоккейным ситуациям. И я надеюсь, что после этой главы ты начнешь воспринимать физику не как сухую науку из учебников, а как живой и увлекательный мир, который буквально у нас под ногами  стоит лишь присмотреться!

Так что до новых встреч, мой пытливый читатель! И помни  трением можно пренебречь только в идеальных задачах, а в реальной игре оно всегда с нами. Но теперь-то мы знаем, как заставить его работать на нас, правда? Ну, или хотя бы не позволить ему слишком сильно мешать. И это уже немало!

Часть II: Термодинамика и лед


Глава 6: Фазовые переходы  как образуется и тает лед

Здравствуй, мой любопытный друг! Рада снова видеть тебя на страницах нашей книги. Сегодня мы с тобой затронем одну из самых «горячих» (или, наоборот, «холодных»? ) тем в физике хоккея  фазовые переходы. Да-да, не удивляйся, именно они, эти загадочные процессы превращения вещества из одного состояния в другое, играют ключевую роль в подготовке ледовой арены к матчу. Но обо всем по порядку!

Для начала давай разберемся, что вообще такое фазовый переход. В физике так называют процесс, при котором вещество переходит из одной фазы (или агрегатного состояния) в другую при изменении внешних условий  температуры, давления и так далее. Самые известные примеры фазовых переходов  плавление (из твердого состояния в жидкое), кипение (из жидкого в газообразное), конденсация (из газообразного в жидкое) и кристаллизация (из жидкого в твердое).

А теперь подумай  каким фазовым переходам подвергается вода, чтобы превратиться в идеальный хоккейный лед? Правильно, кристаллизации! Именно благодаря этому процессу обычная жидкая вода, охлажденная до температуры ниже 0° C, превращается в твердый и прочный лед, по которому так здорово скользить на коньках.

Но не все так просто! Чтобы получить действительно качественный лед для хоккея, мало просто залить арену водой и дождаться, пока она замерзнет. Нужно соблюсти целый ряд условий и пройти несколько стадий. Давай разбираться!

Сначала на арену заливают первый слой воды  так называемую «подложку». Она должна быть очень чистой, без примесей и растворенных газов. Для этого воду предварительно фильтруют, умягчают и даже кипятят  чтобы удалить из нее воздух. Затем воду охлаждают примерно до 60° C и заливают тонким слоем (510 мм) на бетонное основание арены, в которое вмонтирована система охлаждения  трубки с хладагентом.

Здесь начинается самое интересное  процесс кристаллизации льда. Под воздействием холода молекулы воды начинают терять энергию и «прилипать» друг к другу, образуя упорядоченные кристаллические структуры. Но! Если охлаждение происходит слишком быстро, кристаллы льда получаются мелкими и хрупкими. А если слишком медленно  лед выходит рыхлым и непрочным. Вот почему так важно контролировать скорость и равномерность охлаждения!

Идеальная скорость охлаждения для хоккейного льда  около 1° C в час. При такой скорости кристаллы льда растут медленно, но верно, образуя прочную и однородную структуру. За процессом следят специальные датчики и компьютеры, которые регулируют температуру хладагента и следят за толщиной льда. Это настоящее искусство  вырастить идеальный лед!

После того, как первый слой льда затвердел, на него наносят специальную белую краску  чтобы лед был контрастным и хорошо видимым. Затем сверху заливают еще несколько слоев воды  так, чтобы общая толщина льда достигла 34 см. И на каждом слое процесс кристаллизации повторяется  тысячи и миллионы крошечных кристалликов сплетаются в единое полотно, прочное и гладкое.

Но что же происходит со льдом во время игры? Ведь под коньками хоккеистов он постоянно подвергается огромным нагрузкам! Тут мы с тобой снова возвращаемся к фазовым переходам, только уже в обратном направлении  от твердого к жидкому.

Помнишь, мы говорили о трении в прошлой главе? Так вот, когда конек скользит по льду, он не просто царапает поверхность, но и плавит ее! Под давлением конька тончайший слой льда превращается в воду  и именно по этой микроскопической водяной пленке и скользит лезвие. Этот эффект называется «предплавлением»  когда твердое тело начинает плавиться не при обычной температуре плавления, а чуть раньше, под действием давления.

Но и это еще не все! В процессе игры лед постоянно нагревается  от трения коньков, от тепла прожекторов и даже от дыхания игроков и зрителей. И если бы не система охлаждения под ареной, он бы быстро превратился в кашу. Поэтому между периодами лед обязательно «освежают»  заливают тонким слоем холодной воды, которая мгновенно кристаллизуется, «залечивая» царапины и неровности.

А знаешь ли ты, что фазовые переходы играют роль не только в формировании льда, но и в поведении шайбы? Да-да, та самая вулканизированная резина, из которой сделана шайба, тоже меняет свои свойства при изменении температуры! При низких температурах (на льду) шайба становится твердой и упругой, хорошо держит форму и летит точно. А вот если шайба нагреется (например, от частых ударов клюшкой), она становится мягче и пластичнее. Меняется и коэффициент трения, и отскок от борта, и даже траектория полета! Вот почему опытные игроки стараются чаще менять шайбы по ходу матча.

Кстати, о траекториях. Помнишь знаменитый «гол-фантом» Сидни Кросби в финале Олимпиады-2010? Когда в овертайме он бросил шайбу под перекладину, а она застряла в сетке ворот, и никто, кроме самого Кросби, не понял, что это гол? Так вот, некоторые эксперты считают, что причиной такого странного поведения шайбы могло стать именно изменение ее температуры и свойств в процессе игры. То ли шайба размягчилась и «прилипла» к сетке, то ли, наоборот, стала слишком упругой и отскочила в неожиданном направлении. Точного ответа мы, наверное, никогда не узнаем, но сам факт того, что фазовые переходы могут влиять на исход матча  весьма любопытен!

Ну что, друг мой, не заморозил ли я тебя своими рассказами о кристаллизации и плавлении? Надеюсь, теперь ты будешь смотреть на хоккейный лед не просто как на застывшую воду, а как на динамичную и постоянно меняющуюся субстанцию, в которой каждую секунду происходят миллионы микроскопических фазовых переходов. От твердого к жидкому и обратно, от упорядоченного к хаотичному и снова к упорядоченному  в этом вечном круговороте и есть суть не только хоккея, но и самой жизни!

В следующей главе мы продолжим наше исследование льда  но уже с точки зрения его механических свойств. Поговорим о твердости и упругости, о том, почему лед скользкий и как на нем возникают трещины и сколы. Обещаю, будет интересно! А пока  не забывай, что даже в самом твердом и холодном льду есть скрытое тепло и энергия. Нужно лишь уметь их разглядеть  и, возможно, однажды использовать в своей игре!

Глава 7: Свойства льда  твердость, скользкость, хрупкость

Приветствую тебя, мой дорогой читатель! Вот мы и добрались до самой сути нашей ледовой истории  до свойств льда. Казалось бы, что тут особенного? Лед  он и есть лед, твердый, холодный, скользкий. Но поверь мне, как физику, за этой кажущейся простотой скрывается целый мир удивительных явлений и закономерностей. И сегодня мы с тобой в этот мир окунемся!

Начнем, пожалуй, с самого очевидного  с твердости льда. Все мы знаем, что лед  это твердое тело, на котором можно стоять, ходить и даже прыгать (если ты, конечно, не слон и не бегемот). Но что именно делает лед твердым? Ответ  в особом расположении молекул воды в кристаллической решетке льда.

Когда вода замерзает, ее молекулы выстраиваются в строгом порядке, образуя шестиугольные ячейки. Каждая молекула воды окружена четырьмя соседками и связана с ними водородными связями  особым типом межмолекулярного взаимодействия. Эти связи и держат кристалл льда «в кулаке», не давая молекулам разбежаться в разные стороны.

Интересный факт: при замерзании вода расширяется примерно на 9%! Именно поэтому лед легче воды и плавает на ее поверхности. И именно поэтому замерзшая в бутылке вода может разорвать стекло  силы расширения льда очень велики.

Но вернемся на хоккейную площадку. Как ты думаешь, одинаково ли твердым должен быть лед для игры? Оказывается, нет! Идеальный хоккейный лед  это не монолитный камень, а скорее «слоеный пирог» из слоев разной твердости.

Нижний слой льда, который контактирует с охлаждающей системой, должен быть максимально твердым и прочным. Он служит фундаментом, на котором держится вся ледовая «конструкция». А вот верхний слой, по которому непосредственно катаются хоккеисты  должен быть чуть мягче. Это нужно для того, чтобы коньки могли оставлять на нем микроскопические царапины  те самые, которые и обеспечивают сцепление с поверхностью.

Если лед будет слишком твердым  коньки будут скользить по нему, как по стеклу, без всякого контроля. А если слишком мягким  будут застревать, как в песке. Поэтому за твердостью льда постоянно следят с помощью специальных приборов  твердомеров. И если нужно  корректируют ее, меняя температуру охлаждения или добавляя в воду специальные примеси.

Назад