Жизнеописание Л. С. Понтрягина, математика, составленное им самим - Лев Понтрягин 2 стр.


В течение этих сорока пяти лет я вёл в Московском университете педагогическую работу, тесно связанную с моей научной деятельностью. За это время, движимый своим общественным темпераментом, я произнёс несколько довольно острых речей на больших собраниях математиков, посвящённых в основном защите правого дела, так, как я его понимал. Но никакой сколько-нибудь значительной научно-организационной деятельности в течение этих лет я не вёл. В 1970 году, не прекращая научной работы, я начал довольно значительную научно-организационную работу, выросшую из моих научных интересов, сразу в двух различных направлениях. Я занялся научно-издательскими делами и международными отношениями в области математики.

Президент Академии наук СССР М. В. Келдыш учредил по моей инициативе группу математиков под моим председательством для наблюдения за изданием книг в одном из важнейших издательств Академии наук СССР - главной редакции физико-математической литературы издательства "Наука". Группа эта и до сих пор продолжает успешно действовать и оказывает ощутимое влияние на выбор издаваемых книг. Одновременно М. В. Келдыш рекомендовал меня на пост вице-президента Международного союза математиков, который я занимал полный избирательный срок четыре года, а на следующее четырёхлетие стал членом Исполкома этого союза.

В 1978 году уже другой Президент АН СССР - А. П. Александров отстранил меня от поста советского представителя в Международном союзе математиков. Я закончил свою работу в Исполкоме, завершив её поездкой на Международный математический конгресс в Хельсинки в роли главы советской делегации.

Должен сказать, что и без вмешательства А. П. Александрова я оставил бы свой пост в Исполкоме Международного союза математиков, так как мой возраст и состояние здоровья моего и моей жены сделали заграничные поездки на заседания Исполкома трудными для нас.

Кроме того, будучи членом Исполкома, я упорно сопротивлялся давлению международного сионизма, стремящегося усилить своё влияние на деятельность Международного союза математиков. И этим вызвал озлобление сионистов против себя. Думаю, что, отстраняя меня от работы в этой международной организации, А. П. Александров сознательно или бессознательно выполнял желание сионистов.

Конфликт между американскими сионистами и советскими математиками наметился уже на Международном конгрессе 1974 году в Ванкувере и стал совершенно открытым на конгрессе в Хельсинки в 1978 году. Там среди участников конгресса распространялась многотиражная рукопись под названием "Положение в советской математике", в которой ряд ведущих советских математиков, в том числе я и Виноградов, обвинялись в антисемитизме. Там же на небольшом митинге выступил со злобной речью, направленной против Советского Союза, советский эмигрант Е. Б. Дынкин. Несколько позже в американской печати, в "Заметках американского математического общества" и в журнале "Science", появились статьи с обвинением в антисемитизме, направленные против Советского Союза и советских математиков. Эти статьи инспирировались эмигрантами, выехавшими из Советского Союза в США, имея визы в Израиль.

Некоторые из них не являлись сколько-нибудь значительными учёными и должны были расплачиваться за горячее гостеприимство, оказанное им в США, злобной клеветой против Советского Союза. Таково происхождение этой пропаганды, носящей явно политический характер.

* * *

Ещё раньше, чем я прекратил свою международную деятельность в конце 1978 года, перед советскими математиками встала новая проблема чрезвычайной важности. Нам стало известно, что преподавание математики в советской средней школе пришло в упадок, и мы серьёзно занялись этим вопросом. На грани 1977–78 годов математики обратились в ЦК КПСС с письмом, подписанным десятью советскими академиками-математиками. В письме этом сообщалось, что преподавание математики в советской средней школе находится в плохом состоянии. Среди подписавших письмо был и я. Организовал это письмо академик А. Н. Тихонов.

Вопрос о школьном математическом образовании юношества интересовал меня уже раньше. В связи со своей издательской деятельностью я вместе с группой математиков подверг резкой критике одну очень плохую книжку по математике, предназначенную для начинающих. Об этом я расскажу позже подробнее. Занимаясь этой критикой, я вспомнил о том, какого рода источниками пользовался сам, будучи школьником, при изучении математики. И пришёл к намерению написать несколько сравнительно элементарных книг по основным разделам высшей математики.

Поэтому вопрос о преподавании математики в средней школе был для меня уже не чужд, и я серьёзно приступил к его изучению. В настоящее время проблемы преподавания математики в средней школе наряду с экологией представляются мне наиболее важными проблемами, стоящими перед советскими математиками. Я принимаю активное участие в попытках их решения.

Математика в средней школе

Все технические науки в какой-то степени опираются на математику. Во всяком случае, для понимания их необходимо знание элементарной математики: алгебры, геометрии, тригонометрии. Не зная элементарной математики, нельзя стать инженером, особенно инженером-конструктором. Поэтому хорошая постановка преподавания математики в средней школе является необходимым условием для научно-технического прогресса страны.

В дореволюционной России и после революции в Советском Союзе, за исключением короткого периода послереволюционной разрухи, математика преподавалась в средних школах вполне удовлетворительно. Этим объясняются наши успехи в таких сложных областях техники, как самолётостроение и космос. Начав вторую мировую войну с отставанием в области авиации, Советский Союз к концу войны перегнал Германию. Советский Союз первый вывел в космос искусственный спутник и первый послал туда человека.

За последние годы, однако, преподавание математики в средней школе в нашей стране резко ухудшилось. В результате этого ослаб интерес школьников к математике и к наукам, требующим знания математики. Понизился конкурс в вузы, требующие математической подготовки. Пришло в упадок преподавание математики также и в высших школах. Всё это привело или приведёт в ближайшем будущем к снижению научно-технического прогресса в нашей стране. В дальнейшем это может привести к катастрофическому положению.

О причинах, приведших к развалу преподавания математики в советской средней школе, я узнал из телевизионного выступления министра просвещения СССР М. А. Прокофьева. Приблизительно в 1978 году Прокофьев сказал (цитирую по памяти): "Лет 12 тому назад многими авторитетами было признано, что в средней школе преподаётся лишь устарелая математика. Новейшие её достижения вовсе не освещаются. Поэтому было решено начать модернизацию преподавания математики в средней школе. Эта модернизация осуществлялась Министерством просвещения СССР при участии Академии педагогических наук и Академии наук СССР".

Руководство Отделением математики АН СССР рекомендовало для работы по модернизации академика А. Н. Колмогорова, который играл в модернизации руководящую роль. Поэтому ответственность за трагические события в средней школе в значительной степени лежит на нём. Математические взгляды А. Н. Колмогорова, его профессиональные навыки и человеческий характер неблагоприятным образом отразились на преподавании. Ущерб, причинённый развалом преподавания математики в советской средней школе, может быть сравнен по своему значению с тем ущербом, который мог бы быть причинён огромной общегосударственной диверсией.

Основное содержание модернизации заключалось в том, что в школьную математику внедрялась теоретико-множественная идеология, чуждая нормально мыслящему школьнику, склонному к практическому применению полученных в школе знаний, интересная лишь для школьников с извращённым мышлением. Кроме того, в программу были введены элементы математического анализа и метода координат. В школьный курс было введено "множество" не как слово русского языка, а как основное понятие. Ему сопутствовали понятия: включение одного множества в другое, пересечение двух множеств, сумма двух множеств и соответствующие значки. Понятие множества использовалось для формулировки определений. Так, геометрическая фигура была определена как множество точек. А так как в теории множеств слово "равенство" означает совпадение множеств, оказалось, что в геометрии равенство двух фигур означает их полное совпадение. Так возникла необходимость говорить не о равных геометрических фигурах, а о конгруэнтных геометрических фигурах, не считаясь с тем, что слово "конгруэнтность" чуждо русскому языку и чуждо практике. Ведь никакой строитель не будет говорить о конгруэнтных балках, он будет говорить об одинаковых или равных балках. Широко стало использоваться отображение одного множества в другое множество. Казалось бы, что, оставаясь на базе теории множеств, функцию можно определить как отображение одного множества в другое множество. Но при определении функции модернизаторы пошли дальше. Опишу здесь данное в школьном учебнике определение функции, пользуясь, однако, при этом не теми словами, которые употреблялись в учебнике, а терминологией, привычной для профессионального математика.

Пусть P и Q - два множества. Составим их произведение R, т.е. множество всех пар (x, y), где xÎP, yÎQ. В множестве R выделим некоторое подмножество Q. О парах (x, y), попадающих в Q, будем говорить, что они находятся в отношении. Понятие отношения между элементами x и y, принадлежащими множествам P и Q, вводилось в 4-м классе. Обстоятельно и громоздко объяснялось на многочисленных примерах конечных множеств. После этого в 6-м классе вводилось понятие функции, опирающееся на понятие отношения, примерно следующим образом: функцией называется отношение, при котором каждая точка x множества P находится в отношении не более чем с одной точкой y множества Q. Подмножество множества P, состоящее из всех таких x, которые находятся в отношении с некоторыми точками y множества P, называется областью задания функции. А множество всех таких элементов y множества Q, которые находятся в отношении к некоторым элементам x множества P, называется областью значений функции. Отсюда возникла новая проблематика отыскания области задания функции и области её значений. Малосодержательные и ни для чего не нужные упражнения по этой проблематике вошли в задачники.

Вполне созвучное с теоретико-множественной идеологией понятие преобразования вошло как основное в геометрию. Возникло следующее определение вектора: вектором называется преобразование пространства, при котором... далее перечисляются свойства, означающие, что это преобразование есть трансляция пространства. Естественное и нужное для всех определение вектора как направленного отрезка было отодвинуто на задний план.

Школьники если бы и могли освоить все эти определения, то, во всяком случае, в результате огромного труда и затраты времени, благодаря чему основное содержание математики, т.е. умение производить алгебраические вычисления и владение геометрическим чертежом и геометрическим представлением, отодвигалось на задний план. И даже вовсе уходило из поля зрения учителей и школьников.

Внедрение теоретико-множественной идеологии в школьную математику, несомненно, соответствовало вкусам А. Н. Колмогорова. Но само это внедрение, я думаю, уже не находилось под его контролем. Оно было перепоручено другим лицам, малоквалифицированным и недобросовестным. Здесь сказалась черта характера Колмогорова. С охотой принимаясь за новое дело, Колмогоров очень быстро охладевал к нему и перепоручал его другим лицам. При написании новых учебников, по-видимому, произошло именно это. Составленные в описанном стиле учебники печатались миллионными тиражами и направлялись в школы без всякой проверки Отделением математики АН СССР. Эту работу осуществляли под руководством Колмогорова методисты Министерства просвещения СССР и Академии педагогических наук. Жалобы школьников и учителей безжалостно отвергались бюрократическим аппаратом министерства и Академии педагогических наук. Старые опытные учителя в значительной степени были разогнаны. Этот разгром среднего математического образования продолжался более 15 лет, прежде чем он был замечен в конце 1977 года руководящими математиками Отделения математики АН СССР. Ответственность за происшедшее лежит, конечно, не только на одном А. Н. Колмогорове, Министерствах и Академии педагогических наук, но также и на Отделении математики, которое, поручив Колмогорову ответственную работу, совсем не интересовалось тем, как она осуществляется.

После того как катастрофа была замечена и начал намечаться отпор происходящему, лица, каким-то образом заинтересованные в том, чтобы разгром продолжался, стали сопротивляться. В телевизионной передаче "Сегодня в мире" я сам слышал выступление комментатора В. Зорина, в котором он сообщал, что среднее математическое образование в Советском Союзе поставлено очень хорошо и что ему даётся высокая положительная оценка печатью Соединённых Штатов. Это было уже в самом конце 70-х годов. Нет сомнений, что похвала врагов есть дурной признак. Стоит заметить, что сам А. Н. Колмогоров в это время получил Государственную премию Израиля. Возможно, там высоко оценили тот разгром, происходящий в средней школе Советского Союза.

После того как в конце 1977 года до математиков, занимающихся наукой, наконец-то дошло, что в средней школе неблагополучно, десять академиков-математиков обратились с письмом в ЦК. В этом письме мы выражали тревогу по поводу происходящего в школе.

После этого в 78-м году министр просвещения СССР М. А. Прокофьев обратился в Отделение математики АН СССР с просьбой заняться вопросами преподавания. В результате состоялось сперва заседание Бюро Отделения математики, а затем Общее собрание Отделения математики, на котором присутствовали представители Министерств просвещения СССР и РСФСР. Был также и А. Н. Колмогоров. Как на Бюро, так и на Общем собрании Отделения были решительно осуждены действующие учебники и учебные программы. Общее собрание Отделения продолжалось много часов и происходило в большом накале.

Рассматривались конкретные дефекты учебников, и подавляющему большинству присутствующих было совершенно ясно, что так оставаться дальше не может. Решительными противниками каких бы то ни было действий, направленных на исправление положения, были академики С. Л. Соболев и Л. В. Канторович, которые говорили, что надо подождать. Но, несмотря на их сопротивление, было принято решение, требующее вмешательства в вопросы преподавания в средней школе. В частности, было вынесено решение об организации комиссии по преподаванию при Отделении. Выполнение этого решения было поручено Бюро Отделения. Следующее заседание Бюро Отделения занялось образованием комиссии по преподаванию. И здесь возникли разногласия между математиками не по существу, а по тому, кто же будет возглавлять дело.

Обнаружилось, что имеется два претендента - академики А. Н. Тихонов и И. М. Виноградов. И оба они были в какой-то степени поддержаны. Поэтому было принято осложняющее всё дело решение образовать две комиссии. Одну под председательством Тихонова, другую - под председательством Виноградова. Наличие двух комиссий указывало на раскол между математиками и затрудняло работу. В результате длинных перипетий в Отделении, продолжавшихся около трёх лет, обе комиссии были ликвидированы и была образована одна новая комиссия, которую возглавил Виноградов и которая называется комиссией по преподаванию математики в средней школе. Я был единственным заместителем Виноградова.

После смерти Виноградова председателем комиссии назначен я, а моим заместителем А. С. Мищенко - профессор мех-мата МГУ. Так в результате длительной борьбы и преодоления многих трудностей работа Отделения по вопросам преподавания математики в средней школе приобрела чёткую организационную форму. Состав комиссии был утвержден Бюро Отделения.

Назад Дальше