СИБР (хирургическое лечение и профилактика) - Владимир Мартынов 16 стр.


38. Sabaté, J. M. High prevalence of small intestinal bacterial overgrowth in patients with morbid obesity: a contributor to severe hepatic steatosis / J. M. Sabaté, P. Jouët, F. Harnois et al. // Obes. Surg.2008; 18: 371–377.

39. Wigg, A. J. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of nonalcoholic steatohepatitis / A. J. Wigg, I. C. Roberts-Thomson, R. B. Dymock // Gut. 2001; 48: 206–211.

40. Bures, J. Small intestinal bacterial overgrowth syndrome / J. Bures., J Cyrany, D. Kohoutova // World J. Gastroenterol. – 2010. – Vol. 28. – P. 2978–2990.

41. Кучумова, С. Ю. Физиологическое значение кишечной микрофлоры / С. Ю. Кучумова, Е. А. Полуэктова, А. А. Шептулин, В. Т. Ивашкин // РЖГГК. – 2011. – Т. 21. – № 5. – С. 17–27.

42. Ардатская, М. Д. Синдром избыточного бактериального роста: учебное пособие / М. Д. Ардатская. – Москва: Форте принт, 2011. – 56 с.

43. Кучерявый, Ю. А. Синдром избыточного бактериального роста / Ю. А. Кучерявый, Т. С. Оганесян // РЖГГК. – 2010. – № 5. – С. 63–68.

44. Витебский, Я. Д. Очерки хирургии илеоцекального отдела кишечника / Я. Д. Витебский. – М.: Медицина, 1973. – 111с.

45. Мартынов, В. Л. Рефлюксы пищеварительного тракта и их хирургическая коррекция: дис. … докт. мед. наук: 14.00.27 / Мартынов Владимир Леонидович. – Саранск., 2006. – 261 с.

46. Кучерявый, Ю. А. Взаимосвязь синдромов раздраженного кишечника и избыточного бактериального роста: есть ли она? / Ю. А. Кучерявый, С. В. Черёмушкин, Е. А. Маевская, Е. А. Сутугина // РЖГГК. – 2014. – № 2. – С. 5–14.

47. Lawley, T. D. Intestinal colonization resistance / D. Trevor, W. Alan Walker // Immunology. – 2012. – Vol. 138. – P. 1–11.

48. Leser, T. D. Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host Environ / T. D. Leser, L. Molbak // Microbiol. 2009;11:2194–206

49. Maukonen, J. Intra-individual diversity and similarity of salivary and faecal microbiota / J. Maukonen, J. Matto, M. L. Suihko et al. // J. Med. Microbiol. 2008; 12:1560–8.

50. Hayashi, H. Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA genelibraries and terminal restriction fragment length polymorphism / H. Hayashi, R. Takahashi, T. Nishi et al. // J. Med. Microbiol. 2005;11:1093–101.

51. Wilson, M. Microbial Inhabitants of Humans: Their Ecology and Role in Health and Disease, 1st edn. / M. Wilson // New York: Cambridge University Press, 2005.

52. Macfarlane, S. Macfarlane GT. Regulation of short-chain fatty acid production / S. Macfarlane // Proc. Nutr. Soc. 2003;62:67–72.

53. Lapierre, P. Estimating the size of the bacterial pangenome / P. Lapierre, J. P. Gogarten // Trends. Genet. 2009;25:107–10.

54. Dethlefsen, L. Assembly of the human intestinal microbiota / L. Dethlefsen, P. B. Eckburg, E. M. Bik // Trends. Ecol. Evol. 2006; 21:517–23

55. Gill, N. The gut microbiota: challenging immunology / N. Gill, B. B. Finlay // Nat. Rev. Immunol. 2011;11:636–7.

56. Norin, E. Intestinal microflora functions in laboratory mice claimed to harbor a "normal" intestinal microflora. Is the SPF concept running out of date? / E. Norin, T. Midtvedt // Anaerobe. 2010;16:311–3.

57. Eckburg, P. B. Diversity of the human intestinal microbial flora / P. B. Eckburg, E. M. Bik, C. N. Bernstein // Science. 2005; 308:1635–8.

58. Zoetendal, E. G. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces / E. G. Zoetendal, A. von Wright, T. Vilpponen-Salmela et al. // Appl. Environ. Microbiol. 2002;68:3401–7.

59. Macfarlane, S. Regulation of short-chain fatty acid production / S. Macfarlane, G. T. Macfarlane // Proc. Nutr. Soc. 2003; 62:67–72.

60. Johansson, M. E. Microbiology. Keeping bacteria at a distance. / M. E. Johansson, G. C. Hansson // Science. 2011;334:182–3.

61. Macpherson, A. J. The immune geography of IgA induction and function / A. J. Macpherson, K. D. McCoy, F. E. Johansen, P. Brandtzaeg // Mucosal Immunol. 2008;1:11–22.

62. McGuckin, M. A. Mucin dynamics and enteric pathogens / M. A. McGuckin, S. K. Linden, P. Sutton, T. H, Florin // Nat. Rev. Microbiol. 2011; 9:265–78.

63. Salzman, N. H. Enteric defensins are essential regulators of intestinal microbial ecology / N. H. Salzman, K. Hung, D. Haribhai et al. // Nat. Immunol. 2010;11:76–83.

64. Vaishnava, S. The antibacterial lectin RegIIIcpromotes the spatial segregation of microbiota and host in the intestine / S. Vaishnava, M. Yamamoto, K. M. Severson et al. // Science. 2011; 334:255–8

65. Rajilic-Stojanovic, M. Diversity of the human gastrointestinal tract microbiota revisited / M. Rajilic-Stojanovic, H. Smidt, W. M. de Vos // Environ Microbiol. 2007;9:2125–36.

66. Tap, J. Towards the human intestinal microbiota phylogenetic core / J. Tap, S. Mondot, F. Levenez et al. // Environ Microbiol. 2009;11:2574–84.

67. Hooper, L. V. How host – microbial interactions shape the nutrient environment of the mammalian intestine / L. V. Hooper, T. Midtvedt, J. I. Gordon // Annu. Rev. Nutr. 2002;22:283–307.

68. Turnbaugh, P. J. A core gut microbiome in obese and lean twins / P. J. Turnbaugh, M. Hamady, T. Yatsunenko et al. // Nature. 2009;457:480–4.

69. Mortensen, P. B. Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease.Scand / P. B. Mortensen, M. R. Clausen // J. Gastroenterol. Suppl. 1996;216:132–48.

70. Hopkins, M. J. Nondigestible oligosaccharides enhance bacterial colonization resistance against Clostridium difficile in vitro / M. J. Hopkins, G. T. Macfa // Appl. Environ / Microbiol. 2003; 69:1920–7.

71. Lievin, V. Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity / V. Lievin, I. Peiffer, S. Hudault et al. // Gut. 2000;47:646–52.

72. Servin, A. L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens / A. L. Servin // FEMS Microbiol. Rev. 2004;28:405–40.

73. Flint, H. J. Interactions and competition within the microbial community of the human colon: links between diet and health / H. J. Flint, S. H. Duncan, K. P. Scott, P. Louis // Environ. Microbiol. 2007;9:1101–11.

74. Ley, R. E. Ecological and evolutionary forces shaping microbial diversity in the human intestine / R. E. Ley, D. A. Peterson, J. I. Gordon // Cell. 2006;124:837–48.

75. Freter, R. Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora / R. Freter, H. Brickner, M. Botney et al. // Infect. Immun. 1983; 39:676–85.

76. Juge, N. Microbial adhesins to gastrointestinal mucus / N. Juge // Trends Microbiol. 2012;20:30–9.

77. Marteyn, B. Breathing life into pathogens: the influence of oxygen on bacterial virulence and host responses in the gastrointestinal tract / B. Marteyn, F. B. Scorza, P. J. Sansonetti, C. Tang // Cell. Microbiol. 2011;13:171–6.

78. Altier, C. Genetic and environmental control of salmonella invasion / C. Altier // J. Microbiol. 2005; 43:85–92.

79. Marteyn, B. Modulation ofShigellavirulence in response to available oxygen in vivo / B. Marteyn, N. P. Wes, D. F. Browning et al. // Nature. 2010;465:355–8

80. Dobson. A. Bacteriocin production: a probiotic trait? / A. Dobson, P. D. Cotter, R. P. Ross, C. Hill // Appl. Environ. Microbiol. 2012;78:1–6.

81. Corr, S. C. Understanding the mechanisms by which probiotics inhibit gastrointestinal pathogens / S. C. Corr, C. Hill, C. G. Gahan // Adv Food Nutr Res. 2009;56:1–15.

82. Gong, H. S. Mode of action of plantaricin MG, a bacteriocin active againstSalmonella typhimurium / H. S. Gong, X. C. Meng, H. J. Wang // J. Basic. Microbiol. 2010;50 (Suppl. 1):S37–45.

83. Dabard, J. Ruminococcin A, a new lantibiotic produced by a Ruminococcus gnavusstrain isolated from human feces // J. Dabard, C. Bridonneau, C. Phillipe et al. // Appl. Environ. Microbiol. 2001;67:4111–8.

84. Rea, M. C. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity againstClostridium difficile / M. C. Rea, C. S. Sit, E. Clayton et al. // Proc. Natl. Acad. Sci. USA. 2010;107:9352–7.

85. Camilli, A. Bacterial small-molecule signaling pathways / A. Camilli, B. L. Bassler // Science. 2006; 311:1113–6.

86. Gantois, I. Butyrate specifically down-regulates salmonella pathogenicity island 1 gene expression / I. Gantois, R. Ducatelle, F. Pasmans et al. // Appl.Environ. Microbiol. 2006;72:946–9.

87. Monack, D. M. Persistent bacterial infections: the interface of the pathogen and the host immune system / D. M. Monack, A. Mueller, S. Falkow // Nat. Rev. Microbiol. 2004;2:747–65.

88. Cherrington, C. A. Short-chain organic acids at pH 5.0 killEscherichia coliandSalmonellaspp. without causing membrane perturbation / C. A. Cherrington, M. Hinton, G. R. Pearson, I. Chopra // J. Appl. Bacteriol. 1991;70:161–5.

89. Duncan, S. H. The role of pH in determining the species composition of the human colonic microbiota / S. H. Duncan, P. Louis, J. M. Thomson, H. J. Flint // Environ. Microbiol. 2009;11:2112–22.

90. Shin, R. Influence of intestinal anaerobes and organic acids on the growth of enterohaemorrhagic Escherichia coliO157:H7 / R. Shin, M. Suzuki, Y. Morishita // J. Med. Microbiol. 2002; 51:201–6.

91. Veiga, P. Bifidobacterium animalissubsp.lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes / P. Veiga, C. A. Gallini, Beal Cet al // Proc. Natl. Acad. Sci. USA. 2010;107:18132–7.

92. Wong, J. M. Colonic health: fermentation and short chain fatty acids / J. M. Wong, R. de Souza, C. W. Kendall et al. // J. Clin. Gastroenterol. 2006;40:235–43.

93. Fukuda, S. Bifidobacteria can protect from enteropathogenic infection through production of acetate / S. Fukuda, H. Toh, K. Hase et al. // Nature. 2011;469:543–7.

94. Artis, D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. / D. Artis // Nat. Rev. Immunol. 2008;8:411–20.

95. Atarashi, K. ATP drives lamina propria TH17 cell differentiation / K. Atarashi, J. Nishimura, T. Shima et al. // Nature. 2008; 455:808–12.

96. Satoh-Takayama, N. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense / N. Satoh-Takayama, C. A. Vosshenrich, S. LesjeanPottier et al. // Immunity. 2008;29:958–70.

97. Lee, Y. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis / Y. K. Lee, J. S. Menezes, Y. Umesaki, S. K. Mazmanian // Proc. Natl. Acad. Sc.i USA. 2011;108 (Suppl. 1):4615–22.

98. Josefowicz, S. Z. Extrathymically generated regulatory T cells control mucosal TH2 inflammation / S. Z. Josefowicz, R. E. Niec, H. Y. Kim et al. // Nature. 2012;482:395–9.

99. Round, J. L. The gut microbiota shapes intestinal immune responses during health and disease / J. L. Round, S. K. Mazmanian // Nat. Rev. Immunol. 2009;9:313–23.

100. Round, J. L. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota / J. L. Round, S. K. Mazmanian // Proc. Natl. Acad. Sc.i USA. 2010; 107: 12204–9.

101. O’Mahony, C. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-jB activation / C. O’Mahony, P. Scully, D. O’Mahony et al. // PLoS. Pathog. 2008; 4:e1000112.

102. Atarashi, K. Induction of colonic regulatory T cells by ind igenousClostridiumspecies / K. Atarashi, T. Tanoue, T. Shima et al. // Science. 2011;331:337–41.

103. Ivanov, I. I. Induction of intestinal Th17 cells by segmented filamentous bacteria / I. I. Ivanov, K. Atarashi, N. Manel et al. // Cell. 2009; 139:485–98.

104. Kaslowski, K. M. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43 / K. M. Kaslowski, A. T. Vieira, A. Ng et al. // Nature. 2009;461:1282–6.

105. Falkow, S. What is a pathogen? / S. Falkow // ASM News. 1997; 63:359–65.

106. Stecher, B. The role of microbiota in infectious disease / B. Stecher, W. D. Hardt // Trends Microbiol. 2008;16:107–14.

107. Coombes, B. K. Evasive maneuvers by secreted bacterial proteins to avoid innate immune responses / B. K. Coombes, Y. Valdez, B. B. Finlay // Cur. Biol. 2004;14:R856–67.

108. Lupp, C. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae / C. Lupp, M. L. Robertson, M. E. Wickham et al. // Cell Host Microbe. 2007; 2:119–29.

109. Stecher, B. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota / B. Stecher, R. Robbiani, A. W. Walker et al. // PLoS. Biol. 2007; 5:2177–89.

110. Iwasaki, A. Toll-like receptor control of the adaptive immune responses / A. Iwasaki, R. Medzhitov // Nat. Immunol. 2004;5:987–95.

111. Kawai, T. The roles of TLRs, RLRs and NLRs in pathogen recognition / T. Kawai, S. Akira // Int. Immunol. 2009;21:317–37.

112. Barthel, M. Pretreatment of mice with streptomycin provides a Salmonella entericaserovar Typhimurium colitis model that allows analysis of both pathogen and host / M. Barthel, S. Hapfelmeier, L. Quintanilla-Martinez et al. // Infect. Immun. 2003;71:2839–58.

113. Higgins, L. M. Role of bacterial intimin in colonic hyperplasia and inflammation / L. M. Higgins, G. Frankel, I. Connerton et al. // Science. 1999;285:588–91.

114. Geddes, K. Identification of an innate T helper type 17 response to intestinal bacterial pathogens / K. Geddes, S. J. Rubino, J. G. Magalhaes et al. // Nat. Med. 2011;17:837–44.

115. Lee, S. J. Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development / S. J. Lee, J. B. McLachlan, J. R. Kurtz et al. // PLoS. Pathog. 2012;8:e1002499.

116. Broz, P. Molecular mechanisms of inflammasome activation during microbial infections / P. Broz, D. M. Monack // Immunol. Rev. 2011;243:174–90.

117. Finlay, B. B. Salmonellainteractions with host cells: in vitro to in vivo // Philos. Trans. R Soc. Lond. B Biol. Sci. 2000;355:623–31.

118. Raffatellu, M. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine / M. Raffatellu, M. D. George, Y. Akiyama et al. // Cell Host. Microbe. 2009;5:476–86.

119. Stelter, C. Salmonellainduced mucosal lectin RegIIIbkills competing gut microbiota / C. Stelter, R. Kappeli, C. Konig // PLoS ONE. 2011;6: e20749.

120. Liu, J. Z. Zinc sequestration by the neutrophil protein calprotectin enhances salmonella growth in the inflamed gut / J. Z. Liu, S. Jellbauer, A. PoeJet al. // Cell Host. Microbe. 2012;11:227–39.

121. Thiennimitr, P. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota / P. Thiennimitr, S. E. Winter, M. G. Winter et al. // Proc. Nat.l Acad. Sc.i USA. 2011; 108:17480–5.

122. Winter, S. E. Gut inflammation provides a respiratory electron acceptor forSalmonella / S. E. Winter, P. Thiennimitr, M. G. Winter et al. // Nature. 2010;467:426–9.

123. Lawley, T. D. Host transmission of Salmonella entericaserovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota / T. D. Lawley, D. M. Bouley, Y. E. Hoy et al. // Infect. Immun. 2008;76:403–16.

124. Wickham, M. E. Virulence is positively selected by transmission success between mammalian hosts / M. E. Wickham, N. F. Brown, E. C. Boyle et al. // Curr. Biol. 2007;17:783–8.

125. Dethlefsen, L. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation / L. Dethlefsen, D. A. Relman, // Proc. Natl. Acad. Sci. USA. 2011;108 (Suppl. 1):4554–61.

126. Jernberg, C. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota / C. Jernberg, S. Lofmark, C. Edlund, J. K. Jansson / ISME J. 2007;1:56–66.

127. Blaser, M. J. What are the consequences of the disappearing human microbiota? / M. J. Blaser, S. Falkow // Nat. Rev. Microbiol. 2009;7:887–94.

128. Antonopoulos, D. A. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. In fect / D / A / Antonopoulos, S. M. Huse, H. G. Morrison et al.// Immun. 2009;77:2367–75.

129. Brandl, K. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits / K. Brandl, G. Plitas, C. N. Mihu et al. // Nature. 2008;455:804–7.

130. Wilson, K. H. Role of competition for nutrients in suppression ofClostridium difficile by the colonic microflora.Infect / K. H. Wilson, F. Perini // Immun. 1988;56:2610–4.

131. Bartlett, J. G. Narrative review: the new epidemic of Clostridium difficile-associated enteric disease / J. G. Bartlett // Ann. Intern. Med. 2006; 145:758–64.

132. Rupnik, M. Clostridium difficileinfection: new developments in epidemiology and pathogenesis / M. Rupnik, M. H. Wilcox, D. N. Gerding // Nat. Rev. Microbiol. 2009;7:526–36.

133. Shen, A. Clostridium difficiletoxins: mediators of inflammation / A. Shen // J. Innate Immun. 2012; 4:149–58.

134. Lamont, J. T. How bacterial enterotoxins work: insights from in vivo studies / J. T. Lamont, E. Theodore // Trans Am. Clin. Climatol. Assoc. 2002;113:167–80; discussion 80–1.

135. Buffie, C. G. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis / C. G. Buffie, I. Jarchum, M. Equinda et al. // Infect Immu n.2012;80:62–73.

136. Chang, J. Y. Decreased diversity of the fecal Microbiome in recurrent Clostridium difficile-associated diarrhea / J. Y. Chang, D. A. Antonopoulos, A. Kalra et al. // J. Infect. Dis. 2008; 197:435–8.

137. Lawley, T. D. Proteomic and genomic characterization of highly infectiousClostridium difficile630 spores / T. D. Lawley, N. J. Croucher, L. Yu et al. // J. Bacteriol. 2009;191:5377–86.

138. Bartlett, J. G. Clinical practice. Antibiotic-associated diarrhea / J. G. Bartlett // N Engl. J. Med. 2002; 346:334–9.

139. Moore S. R. Update on prolonged and persistent diarrhea in children / S. R. Moore // Curr. Opin. Gastroenterol. 2011;27:19–23.

140. Cooper, M. A. Fix the antibiotics pipeline / M. A. Cooper, D. Shlaes // Nature. 2011;472:32.

141. Bron, P. A. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa / P. A. Bron, P. van Baarlen, M. Kleerebezem // Nat. Rev. Microbiol. 2012; 10:66–78.

142. Lembo, A. Rifaximin for the treatment of diarrhea associated irritable bowel syndrome: short term treatment leading to long term sustained response / A. Lembo, S. F. Zakko, N. L. Ferreira // Gastroenterology. – 2008. – Vol. 134 (4, suppl. 1). – P. 545.

Назад Дальше