Общая и Неорганическая химия с примерами решения задач - Михаил Бармин 15 стр.


На скорость коррозии влияет и характер раствора электролита. Чем выше его кислотность (т.е. меньше pH), а также чем больше содержание в нем окислителей, тем быстрее протекает коррозия. Значительно возрастает коррозия с ростом температуры.

Некоторые металлы при соприкосновении с кислородом воздуха или в агрессивной среде переходят в пассивное состояние, при котором резко замедляется коррозия. Например, концентрированная азотная кислота легко делает пассивным железо, и оно практически не реагирует с концентрированной азотной кислотой. В таких случаях на поверхности металла образуется плотная защитная оксидная пленка, которая препятствует контакту металла со средой.

Защитная планка всегда имеется на поверхности алюминия. Подобные пленки в сухом воздухе образуются также на Be, Cr, Zn, Ta, Ni, Cu и других металлах. Кислород является наиболее распространенным пассиватором.

Пассивированием объясняется коррозионная стойкость нержавеющих сталей и сплавов.

Защита от коррозии

Коррозия металлов протекает непрерывно и причиняет огромные убытки. Подсчитано, что прямые потери железа от коррозии составляют около 10 % его ежегодной выплавки. В результате коррозии металлические изделия теряют свои ценные технические свойства. Поэтому имеют очень большое значение методы защиты металлов и сплавов от коррозии. Они весьма разнообразны. Назовем некоторые из них.

Защитные поверхностные покрытия металлов

Они бывают металлическими (покрытие цинком, оловом,

свинцом, никелем, хромом,

и другими металлами) и неметаллическими (покрытие лаком, краской, эмалью и

другими веществами). Эти покрытия изолируют металл от внешней среды. Так, кровельное железо покрывают цинком: из оцинкованного железа изготавливают многие изделия бытового и промышленного значения. Слой цинка предохраняет железо от коррозии, так как хотя цинк и является более активным металлом, чем железо (см. ряд стандартных электродных потенциалов металлов), он покрыт оксидной пленкой. При повреждениях защитного слоя (царапины, пробои крыш и т.д.)

присутствии влаги возникает гальваническая пара Zn/Fe. Катодом (положительным полюсом) является железо, анодом (отрицательная полюсом) – цинк. Электроны переходят от цинка к железу, где связываются молекулами кислорода (кислородная деполяризация), цинк растворяется, но железо остается защищенным до тех пор, пока не разрушится весь слой цинка, на что требуется довольно много времени. Покрытие железных изделий никелем, хромом, помимо защиты от коррозии, придает им красивый внешний вид.

Создание сплавов с аникоррозионными свойствами. Введе

нием в состав стали до 12 % хрома получают нержавеющую сталь, устойчивую к коррозии. Добавки никеля, кобальта и меди усиливают антикоррозионные свойства стали, как повышает склонность сплавов к пассивации. Создание сплавов с антикоррозионными свойствами – одно из важных направлений борьбы с коррозионными потерями.

Протекторная защита и электрозащита. Протекторная за-

щита применяется в тех случаях, когда защищается конструкция (подземный трубопровод, корпус судна), находящаяся

среде электролита (морская вода, подземные, почвенные воды и т.д.). Сущность такой защиты заключается в том, что конструкцию соединяют с протектором – более активным металлом, чем металл защищаемой конструкции. В качестве протектора при защите стальных изделий обычно используют магний, алюминий, цинк и их сплавы. В процессе коррозии

протектор служит анодом и разрушается, тем самым предохраняя от разрушения конструкцию. По мере разрушения протекторов их заменяют новыми.

На этом принципе основана и электрозащита. Конструкция, находящаяся в среде электролита, также соединяется с другим металлом (обычно куском железа, рельсом и т.п.), но через внешний источник тока. При этом защищаемую конструкцию присоединяют к катоду, а металл – к аноду источника тока.

Электроны отнимаются от анода источником тока, анод (защищающий металл) разрушается, а на катоде происходит восстановление окислителя.

Электрозащита имеет преимущество перед протекторной защитой: радиус действия первой около 2000 м, второй – около 50 м.

Изменение состава среды. Для замедления коррозии металлических изделий в электролит вводят вещества (чаще всего органические), называемые замедлителями коррозии, или ингибиторами. Они применяются в тех случаях, когда металл следует защищать от разъедания кислотами. Советские ученые создали ряд ингибиторов (препараты марок ЧМ, ПБ и др.), которые, будучи добавлены к кислоте, в сотни раз замедляют рас-творение (коррозию) металлов.

В последние годы разработаны летучие (или атмосферные) ингибиторы. Ими пропитывают бумагу, которой обертывают металлические изделия. Пары ингибиторов адсорбируются на поверхности металла и образуют на ней защитную пленку.

Ингибиторы широко применяются при химической очистке от накипи паровых котлов, снятии окалины с обработанных изделий, а также при хранении и перевозке соляной кислоты в стальной таре. К числу неорганических ингибиторов относятся нитриты, хроматы, фосфаты, силикаты. Механизм действия ингибиторов является предметом исследования многих химиков.

Девиз : «ВЕЩЬ В СЕБЕ»

ЛЕКЦИЯ 13

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ

План:

Термин комплексные соединения (КС) и история их открытия.

Основные положения координационной теории Альфреда Вернера.

Пространственное строение и изомерия КС.

Природа химической связи

Диссоциация в растворах. Константа нестойкости (КНЕСТ).

Где и для чего их применяют.

1. Соединение высшего порядка – так называл знаменитый шведский химик И.Я.Берцелиус (1779-1848) сложные многокомпонентные химические соединения, строение которых очень долго оставалась загадкой для ученых. Данный термин широко использовал А.Вернер и многие другие ученые конца XIX и начала XX века. Теперь эти соединения называют комплексными, но чаще – координационными. Термин “комплексные соединения” введен в химическую литературу выдающимся физико-химиком В.Оствальдом. Координационными их стали называть после того, как в умах ученых утвердилась координационная теория А.Вернера описывающая строение данных соединений.

Почему высшего порядка? Бросается в глаза, что эти сложные (комплексные) соединения можно рассматривать как состоящие из простых, способных к самостоятельному существованию. Например, при растворении AgCl в водном растворе аммиака получается соединение [Ag(NH3)2]Cl (хлорид диамин серебра (1), формулу которого можно записать AgCl • 2NH3 Действительно, это сложное соединение состоит из простого, давно известного AgCl и также хорошо известного NH3. Конечно же, и то и другое способно к самостоятельному существованию. Однако, в К.С. AgCl и NH3 кардинально изменяют свои свойства.

Время рождения координационной химии как науки связы-вают со случайным получением в 1798 году Тассером соединения CoCl3 • 6NH3. Между тем были известны соединения высшего по-рядка и до открытия Тассера. Вероятно, первым подобным соединением, синтезированным в лаборатории, является берлинская лазурь Fe4[Fe(CN)6]3. Она случайно получена художником Дисбахом в 1704г. Ииспользована как красящий пигмент.

На несколько миллиардов лет раньше, природа создала такие соединения высшего порядка как FeSO4 • 7H2O и СuSO4 • 5H2O

(железистый и медный купороc). Первое встречается в виде минерала механтерита, второй в виде халькантита. Человеку они стали известны уже в XIII веке.

Из берлинской лазури и едкого калия Макер в 1749 году впервые получил желтую кровяную соль K4(Fe(CN)6).

Итак, соединения высшего порядка были известны и до Тассера. Однако, только после получения CoCl3 • 6NH3 химики осознали, что имеются соединения, не вписывающиеся ни в какие привычные категории (Петух не делает утра, но он будит).

В становлении и развитии химии К.С. большой вклад был внесен шведскими и датскими химиками Берцелиусом, Бломстрандом, Клеве, Иергенсен. В конце XIX века, центром по изучению химии К.С. стал Цюрих, где работал создатель координационной теории Альфред Вернер. После его кончины важные исследования были выполнены в Германии его учеником Паулем Пфейфером. В начале текущего столетия наибольший прогресс в этой области химии достигнут в нашей стране благодаря Льву Александровичу Чугаеву, который создал уникальную со-ветскую школу химиков-комплексников. Следует отметить, что еще в конце XIX столетия яркий цикл исследований по химии комплексных соединений выполнен в России Николаем Семеновичем Курнаковым. Огромный вклад в химию К.С. внесли Чатт в Великобритании, Дж.Бейлар в США, Л.Силлен в Швеции

многие другие ученые в различных странах.

Теоретические представления о К.С. развивались на основе прочных комплексов довольно узкого круга металлов: КОБАЛЬТА (III), ПЛАТИНЫ (II), ПЛАТИНЫ (IV), ХРОМА (II), МЕДИ(П). Синтез проводился из их солей, а в качестве другой составляющей широко использовался аммиак.

Одной из важнейших вех на пути к координационной теории были аммонийная гипотеза английского ученого Т.Грэма (1840г.). Он усматривал аналогию между взаимодействием ам-

миака с кислотами и с солями металлов.

NH3 + HCl → {H+NH3}Cl

2NH3 + CuCl2 → {Cu2+(NH3)2}Cl2

Эту догадку можно отнести к числу гениальных прозрений. Трудности у Грэма возникали в связи с тем, что число молекул аммиака, присоединившихся к металлу, например в CoCl3 • 6NH3, часто было больше, чем число эквивалентов металла или, говоря современным языком, число присоединившихся молекул аммиака часто превышало степень окисления иона металла (III и 6).

В середине ХIХ века комплексообразование иногда трактовалось как переход III азота в V азот по уравнению:

Грем полагал, что вместо одного из атомов водорода в аммо-нийном ионе находится металл:

Известно, что ковалентность азота – З(2р3), и 5-и валентным он быть не может.

В 1851 году немецкий ученый А.Гофман высказал мысль о том, что атом водорода в аммонийном радикале способен замещаться на другой аммонийный радикал:

Связи N-Cl везде одинаковые, однако, при прибавлении AgNOхлора3. (изб.) в осадок (AgCl) переходили только два атома Следующий шаг сделал швед К.В.Бломстранд (1869г.). Строение хлорида аммония он выразил Н–NH3–Cl. Атом Н способен замещаться металлом, а пятивалентные атомы азота способны соединяться между собой, образуя цепи – NH3—NH3 – (по аналогии с органическими соединениями). По мнению Бломстранда, стабильность цепи атомов зависит от природы атома металла. Платина и медь обеспечивают устойчивость цепи, образованной только двумя атомами азота, а Co, Ni, Ir, Rh способны стабилизировать цепи боль-

шей длины.

Бломстранд ошибочно считал, что соединение CoCl3 имеет формулу Co2Cl6, поэтому составу CoCl3 • 6NH3 он приписывал структуру:

Если Cl связан с Co, то при добавлении AgNO3 AgCl не вы

падает CoCl3 • 5NH3

Датский ученый Иергенсен установил, что молекула CoCl3 • 6NH3 соответствует именно этой формуле. Исходя из химических свойств:

Цепи двух типов:

Однако, можно было получить два комплекса состава CoCl3 • 4NH3 резко отличающихся по свойствах (одно – зеленого, другое – фиолетового цвета). Цепная теория была бессильна объяснить различное строение изомеров состава CoCl3

• 4NH3.

Критика Менделеевым цепной теории:

«Цепь аммиаков может быть, повидимому, беспредельна, и, нам кажется, наиболее существенный недостаток такого представления и состоит именно в том, что оно не указывает вовсе на число аммиаков, могущих удерживаться платиной. Притом допустить связь азота с азотом в столь прочных телах едва ли возможно»…

Гете отмечал: «что носится в воздухе и чего требует время, то может возникнуть одновременно в ста головах без всякого заимствования».

Теория, хорошо отражающая в то время строение соединений высшего порядка, создана в Цюрихе (Швейцария) Альфредом Вернером.

Вернер родился в 1866г. в городе Мюлузе (Эльзас) в семье рабочего. Впоследствии купил ферму и занялся разведением племенного скота.

Увлечение химией у будущего творца координационной теории проявилось в юношеском возрасте, когда он, после окончания начальной школы, учился в Техническом училище. Для химических экспериментов в домашних условиях родители Альфреда отвели сарай.

Окончив военную службу, Вернер решил не возвращаться в Эльзас. Причиной этому была напряженная политическая обстановка, в условиях которой проводилось «онемечивание» населения Эльзаса. В 1889г. он окончил Цюрихский политехникум со званием технического химика. Ему была предложена неоплачиваемая должность ассистента химикотехнической лаборатории. Однако, эта должность давала возможность заниматься любимым делом. Только энергичная творческая деятельность должна была разрешить финансовые затруднения молодого специалиста. Всего менее чем через 4 года им создана теория, точнее целое мировоззрение в химии.

80-е годы прошлого столетия ознаменовались многочисленными и крупными достижениями органической химии.

Под руководством любимого учителя А.Ганча он стал работать над диссертацией. Профессор Цюрихского университета Артур Ганч синтезировал много новых азотсодержащих органических соединений и изучал их строение, Ганч предложил Вернеру заняться стереохимией азотсодержащих соединений. Это была малоразработанная область органической химии. Уже в 1890г. вышла статья Ганча и Вернера «О пространственном расположении атомов в азотсодержащих молекулах». В ней стереохимия азотсодержащих соединений получила прочную научную основу. Вернер высказал идею о том, что три валентности атома азота в некоторых соединениях направлены к углам тетраэдра, четвертый угол занимает сам атом азота. Работа вошла в диссертацию Вернера по стереохимии азотсодержащих соединений.

После защиты он писал родителям: «С возрастом я становлюсь энтузиастом, часто охватывает экстаз перед красотой моей науки. Чем дальше я погружаюсь в ее тайны, тем больше она кажется мне огромной, величественной, слишком красивой для простого смертного».

Чтобы стать приват-доцентом конкурсная работа «К теории сродства и валентности» была представлена в 1891 году.

В термохимической лаборатории в Париже Вернер выполнил первое исследование по неорганической химии «Об основном нитрате кальция».

Летом 1892 года Вернер приступил к чтению лекций: «Атомная теория», «Избранные темы неорганической химии», «Сравнительная органическая химия» (одной из тем – комплексные соединения).

Статья «О строении неорганических соединений» вышла в

1893 году.

Вернер обратил внимание на одно чрезвычайно важное обстоятельство. Аналитические данные для большого числа К.С. свидетельствовали о том, что число нейтральных молекул, присоеди-няющихся к молекулах соли металла, чаще всего равно 6 или 4.

CoCl3 • 6H2O, CoCl2 • 6H2O, CrCl3 • 6NH3, CoCl3 • 6NH3, CoCl2 •6NH3,

NiCl2 • 6NH3, PtCl4 • 6NH3, СuCl2 • 4NH3, PdCl2 • 4NH3, PtCl3 • 4NH3.

Вернер на основании этого пришел к заключению, что в КС имеется центральный атом (ион металла), вокруг которого координируются нейтральные молекулы или кислотные остатки. Эти группы называются ЛИГАНДАМИ. ЛИГАНД– СВЯЗАННЫЙ. Число координированных лигандов чаще всего 4 или 6.

Число лигандов окруженное центральным атомом называет-ся КООРДИНАЦИОННЫМ ЧИСЛОМ. Лиганд занимает около центрального атома координационное место (позицию).

В настоящее время известно много органических молекул, которые занимают несколько координационных мест. Если лиганд занимает I координационное место – монодентатный, два – дидентатный, три – тридентатный. Центральный атом часто называется комплексообразователем.

При координации изменяются свойства как лигандов, так и иона металла – комплексообразователя.

Часто координированные лиганды и ион металла невозмож-но обнаружить при помощи химических реакций, характерных для них в свободном состоянии.

Совокупность иона металла и окружающих его лигандов названа Вернером внутренней сферой комплекса. Ее обычно заключают в квадратные скобки. Все остальное в КС составляет внешнюю сферу и пишется за квадратными скобками.

Первой задачей на пути исследования строения КС – является установление состава внутренней сферы. СoCl3 • 6NH3. Центральный атом – ион кобальта (III). Действительно, при

действии щелочи на раствор комплекса не происходит образо-вания Со(ОН)3.

Нейтральные лиганды, как правило, входят во внутреннюю сферу комплекса. Можно убедиться (фенолфталеин), что свободного NH3 в растворе нет. Хлорид ионы осаждаются ионами серебра в виде AgCl. По массе осадка можно убедиться, что все ионы Cl– переходят в AgCl.

Таким образом [Co(NH3) 6] 3+ осаждение Cl– показало, что все три хлорид-иона во внешней сфере.

Следовательно [Co(NH3) 6] Cl3 в целом нейтрально. Положительный заряд комплексного иона компенсировал отрицательный заряд трех хлорид-ионов.

Назад Дальше