Глава номер девять
Магия тригонометрии
Высшая точка тригонометрии
Основная задача тригонометрии – решать задачи, которые нельзя решить методами классической геометрии. Вот, смотрите сами.
Вопрос: Как измерить высоту горы, если в нашем распоряжении только транспортир и калькулятор?
Сделать это можно пятью разными способами. Причем первые три из них не имеют вообще никакого отношения к математике!
Способ 1 (или метод решения «в лоб»): Заберитесь на вершину горы и сбросьте с нее калькулятор. (Это потребует определенных усилий). Засеките время, за которое он долетит до земли (или дождитесь вопля восходителя внизу). Если у вас получилось t секунд, то, проигнорировав эффекты сопротивления воздуха и скорости падения, вы определите, что высота горы составляет примерно 4,9t² метров (полистайте учебник физики, если не верите). Недостатки этого метода очевидны: и сопротивление воздуха, и скорость падения – показатели достаточно важные и могут сильно сказаться на результате. А еще вы останетесь без калькулятора и, возможно, и без встроенного в него секундомера, который необходим для измерения времени падения. Но есть и преимущества: транспортир останется в целости и сохранности, ведь в этом эксперименте он вам вообще не нужен.
Способ 2 (или метод загорелых альпинистов): Подойдите к смотрительнице местных красот (желательно симпатичной и дружелюбно настроенной) и предложите ей свой новенький блестящий транспортир в обмен на информацию о высоте горы. Если смотрительниц поблизости не наблюдается, найдите самого загорелого альпиниста (чем сильнее загар, тем больше времени он проводит на вершине и, следовательно, может знать ответ на ваш вопрос). Основное преимущество этого метода – у вас появится новый друг и калькулятор будет цел). Если ответ альпиниста вызовет у вас сомнения, всегда можно забраться на вершину и прибегнуть к способу № 1. Недостатки – у вас могут конфисковать транспортир и обвинить в попытке дать взятку должностному лицу.
Способ 3 (метод указателей): Перед тем как применять способы 1 или 2, поищите внизу табличку, на которой будет указана высота горы. Несомненное преимущество данного метода заключается в том, что вам не придется жертвовать своим оборудованием.
Если же ни один из этих вариантов вас не устраивает, придется поискать более математические методы, о которых и пойдет речь в этой главе.
Тригонометрия и треугольники
Слово «тригонометрия» состоит из двух греческих корней: trigon и metria, сочетание которых буквально означает «измерение треугольника».
Равнобедренный прямоугольный треугольник. Как следует из названия, один из его углов равен 90°, а два других равны между собой, то есть по 45° (не забыли, что сумма углов треугольника равна 180°?). Если предположить, что длина каждого катета составляет 1, то, согласно теореме Пифагора, длина гипотенузы будет равна √(1² + 1²) = √2. И, кстати, такое же соотношение сторон – 1: 1: √2, – будет у каждого равнобедренного прямоугольного треугольника (посмотрите на рисунок).
Треугольник с углами 30°, 60° и 90°. В равностороннем треугольнике все стороны имеют одинаковую длину, а все углы – по 60°. Если мы разделим такой треугольник на две конгруэнтные части (как показано ниже), у нас получатся два прямоугольных треугольника с углами 30°, 60° и 90°. Если длины всех сторон изначального треугольника равны 2, будут равны и 2 гипотенузы каждой из его прямоугольных половинок. Длины меньших катетов при этом составят 1, а бо́льших, как следует из теоремы Пифагора, – √(2² + 1²) = √3. Эта пропорция – 1: √3: 2 – также будет справедлива и в отношении любого треугольника с углами в 30°, 60° и 90° (это просто, как 1, 2, √3). В частности, при гипотенузе длиной 1 длины катетов составят 1/2 и √3/2.
ОтступлениеЕдинство (a, b, c), в котором a, b и c суть положительные целые величины, а a² + b² = c², называют Пифагоровой тройкой. Самая простая из таких троек (и наименьшая по значению величин) – (3, 4, 5). Общее же их количество неограниченно: просто увеличиваем треугольник сначала до (6, 8, 10), затем до (9, 12, 15) и т. д., до скольки угодно, хоть до (300, 400, 500). Но есть куда более интересный и остроумный способ создания таких троек. Возьмите два любых положительных числа m и n, где m > n. Допустим, что
a = m² – n²b = 2mnc = m2 + n2Обратите внимание: a² + b² = (m² – n²)² + (2mn)² = m4 + 2m²n² + n4, что равно (m² + n²)² = c², поэтому тройка (a, b, c) является пифагоровой. Например, если m = 2, а n = 1, получим (3, 4, 5); (m, n) = (3, 2) даст (5, 12, 13); (m, n) = (4, 1) – (15, 8, 17); (m, n) = (10, 7) – (51, 140, 149) и т. д. Самое интересное, что с помощью этого метода можно создать абсолютно любую пифагорову тройку (доказательство можно найти в любой книге по теории чисел).
Вся тригонометрия основана на двух очень важных функциях – синусе и косинусе. Возьмем треугольник ABC (вроде того, что изображен чуть ниже) и обозначим длину гипотенузы буквой c, а длины катетов, лежащих напротив ∠A и ∠B, – буквами a и b соответственно.
Синус угла ∠A (который в прямоугольном треугольнике должен быть острым) будем искать по формуле
Косинус этого угла – по формуле
Имейте в виду, что любой прямоугольный треугольник с углом A будет пропорционален нашему изначальному треугольнику, поэтому значения синуса и косинуса A от размеров треугольника не зависят.
Еще одна не менее популярная в тригонометрии функция – тангенс. Для угла A он представляет собой
в прямоугольном треугольнике –
Для всех этих формул есть свои специальные «запоминалки». Один мой знакомый, например, любил повторять: «Сильно противный Глеб, который прилег на гриб, так противно прилег». Здесь «СИльно» означает синус, все «ПРОТИВное» – противолежащий катет, «КОторый» – косинус, «ПРИЛег» – прилежащий катет, «ТАк» – тангенс, а слова, начинающиеся с буквы «г» – гипотенузу (то есть получаем подсказку насчет синуса, потом косинуса, а потом и тангенса).
Итак, в треугольнике с длинами сторон 3, 4 и 5 имеем
А что с углом B? Аккуратно подсчитаем и получим
то есть синус B будет равен косинусу A, а косинус B – синусу A! Волшебного в этом абсолютно ничего нет: просто сторона, противолежащая ∠A, является прилежащей к ∠B, и наоборот – сторона, прилежащая к ∠A, является противолежащей ∠B. Гипотенуза же у этих двух углов так и вовсе одна на двоих.
Так как ∠A + ∠B = 90°, мы можем сделать вывод, что для любого острого угла справедливо следующее:
sin (90° – A) = cos A cos (90° – A) = sin AТо есть если в треугольнике ABC ∠A равен 40°, то при ∠B = 50° sin 50° = cos 40°, а cos 50° = sin 40°. Другими словами, косинус данного угла (40°) равен синусу дополнительного (50°).
Кроме синуса, косинуса и тангенса в тригонометрии есть еще три элементарные функции. Используются они, правда, не так часто, как уже известные нам, но почему бы не упомянуть и их? Это секанс, косеканс и котангенс, и смысл их заключается в том, что
Приставка «ко-» означает здесь те же отношения дополнения, что и в паре «синус – косинус», а именно: для любого острого угла прямоугольного треугольника sec (90° – A) = csc A, а tan (90° – A) = cot A.
Чтобы найти косинусы, тангенсы и все остальное, достаточно знать значение синуса одного из углов, это очевидно. Но ведь и его (скажем, sin 40°) тоже надо как-то найти, правда? Самый простой способ – воспользоваться калькулятором: просто включаем его и узнаем, что sin 40° = 0,642…. Откуда это значение берется, мы узнаем чуть позже.
Приставка «ко-» означает здесь те же отношения дополнения, что и в паре «синус – косинус», а именно: для любого острого угла прямоугольного треугольника sec (90° – A) = csc A, а tan (90° – A) = cot A.
Чтобы найти косинусы, тангенсы и все остальное, достаточно знать значение синуса одного из углов, это очевидно. Но ведь и его (скажем, sin 40°) тоже надо как-то найти, правда? Самый простой способ – воспользоваться калькулятором: просто включаем его и узнаем, что sin 40° = 0,642…. Откуда это значение берется, мы узнаем чуть позже.
Некоторые значения тригонометрических функций встречаются в расчетах настолько часто, что лучше всего их просто запомнить. Вернемся к треугольнику с углами 30°, 60° и 90° и вспомним про соотношение его сторон – 1: √3: 2. Получается, что
Стороны же треугольника с углами 45°, 45° и 90° имеют соотношение 1: 1: √2, следовательно
sin 45° = cos 45° = 1/√2 = √2/2А так как tan запомнить придется только то, что tan 45° = 1 и что tan 90° определить невозможно, потому что cos 90° = 0.
С такими знаниями пора вернуться к подножию нашей горы. Только сначала давайте остановимся у первого попавшегося дерева и попробуем рассчитать его высоту.
Предположим, что мы не дошли до ствола 3 метра и что угол между землей под нашими ногами и верхушкой дерева составляет 50°, как изображено на рисунке. (Определить угол, кстати, можно либо с помощью приложения, которое в наши дни есть на многих смартфонах, либо посредством простого устройства, называющегося клинометр, которое легко собирается из транспортира, соломинки для питья и канцелярской скрепки.)
Обозначим высоту буквой h. То есть
Следовательно, h = 3 tan 50°. Последний, если верить калькулятору, равен 1,19…. Получаем 3(1,19…) ≈ 3,57, что и является высотой дерева.
Теперь пойдем к горе – испытаем первый из наших математических методов. Сложность его в том, что мы даже примерно не сможем прикинуть расстояние до центра подножья – то есть вместе с высотой горы мы получаем уравнение с двумя неизвестными. Предположим, что мы измерили угол от точки, в которой находимся, до вершины и получили 40°, потом отошли на 300 метров дальше и получили уже 32° (см. рисунок). Что нам теперь с этой информацией делать?
Способ 4 (метод тангенсов): Обозначим высоту горы h, а расстояние до центра ее подножья в изначальной позиции – буквой x (то есть x это длина отрезка CD). Калькулятор говорит, что в треугольнике BCD tan 40° ≈ 0,839, следовательно
что можно представить как h = 0,839x. В треугольнике ABC имеем
что дает нам h = 0,625(x + 300) = 0,625x + 187,5.
Так как h в обоих случаях есть величина одинаковая, мы имеем полное право эти два уравнения соединить:
0,839x = 0,625x + 187,5Решается это как x = 187,5/(0,214) ≈ 876. Значит, h приблизительно соответствует 0,839(876) ≈ 735, что и будет высотой горы.
Тригонометрия и окружность
Пока что наши знания о тригонометрических функциях ограничиваются прямоугольными треугольниками. Для решения повседневных задач этого, в принципе, более чем достаточно. Но разве вам не интересно узнать, как они ведут себя в других углах, а не только в тех, значения которых колеблются исключительно в диапазоне от 0° до 90° (ведь в прямоугольном треугольнике один из углов всегда прямой, а два оставшихся – острые)? Конечно, интересно, и именно этим мы и займемся в этом разделе – посмотрим на тригонометрические функции через призму единичного круга и разберемся в особенностях поведения синусов, косинусов и тангенсов углов других типов.
Надеюсь, вы не забыли, что единичным называется такой круг, радиус которого равен 1, а центр расположен в точке начала координат (0, 0). Для него отлично работает уравнение x² + y² = 1, которое получилось у нас в прошлой главе из теоремы Пифагора.
Давайте попробуем найти некую точку (x, y), расположенную на окружности выше и левее точки (1, 0) и образующую с центром круга и осью x острый угол A:
Для того чтобы найти x и y, нам нужно начертить прямоугольный треугольник и применить к нему наши формулы косинусов и синусов:
Другими словами, значения координат (x, y) составят (cos A, sin A). Если обобщать, то при радиусе, равном r, (x, y) = (r cos A, r sin A).
Для любого угла A нам нужно определить (cos A, sin A), то есть место расположения на окружности его вершины. При этом cos A будет соответствовать значению координаты по оси x, а sin A – по оси у, вот так:
А вот еще одно общее представление. Только теперь мы разделим единичный круг на много углов с шагом 30° (и сделаем один шаг в 45° для большей наглядности) – так мы получим углы из уже очень хорошо знакомых нам треугольников. Помните, я советовал вам выучить значения косинусов и синусов для углов 0°, 30°, 45°, 60° и 90°?
К углам этим можно прийти с помощью простого отражения значений, содержащихся в первой четверти окружности.
Прибавление или вычитание 360° на величину угла никак не повлияет (мы просто обойдем вокруг него с одной или другой стороны), а значит, для любого ∠A
sin (A ± 360°) = sin A cos (A ± 360°) = cos AИмея дело с отрицательными значениями углов, мы двигаемся по окружности слева направо: так, угол, равный –30°, ничем, по сути, не отличается от угла, равного 330°. Обратите внимание, что сдвиг на A градусов по часовой стрелке приводит нас к той же x-координате, что и сдвиг на те же A градусов против часовой стрелки. Y-координата же при этом сменит знак на противоположный. Другими словами, для любого значения угла A
cos (–A) = cos A sin (–A) = –sin AНапример,
cos (–30°) = cos 30° = √3/2 sin (–30°) = –sin 30° = –1/2Обратное происходит, когда мы «отзеркаливаем» ∠A через ось y. Значение y-координаты получившегося таким образом дополнительного угла 180 – A остается неизменным, а значение x-координаты меняет знак на противоположный. То есть
cos (180 – A) = –cos A sin (180 – A) = sin AСкажем, при A = 30°
cos 150° = –cos 30° = –√3/2 sin 150° = sin 30° = 1/2Остальные тригонометрические функции определяются по старой схеме (например, tan A = sin A/cos A).
Оси x и y «разрезают» поверхность окружности на четыре сектора-квадранта. Пронумеруем их римскими цифрами по часовой стрелке – I, II, III и IV, – начиная с правой верхней, то есть с диапазона углов от 0° до 90°. Квадрант II, таким образом, охватит диапазон от 90° до 180°, квадрант III – от 180° до 270°, а квадрант IV – от 270° до 360°. Обратите внимание, что в разных квадрантах разные тригонометрические функции будут вести себя по-разному: положительные значения синуса мы получим в квадрантах I и II, косинуса – в квадрантах I и IV, тангенса – в квадрантах I и III. Чтобы это запомнить, некоторые из моих учеников любят повторять «Все студенты таскают калькуляторы» (посмотрите на первые буквы в каждом слове этой «запоминалки»: «в» – «все функции» в квадранте I, «с» – «синусы» в квадранте II, «т» – «тангенсы» в квадранте III, «к» – «косинусы» в квадранте IV).
Ну и еще немного терминологии. Для определения неизвестных значений углов нужны обратные тригонометрические (циклометрические, круговые) функции. Например, обратным синусом 1/2 будет sin–1(1/2)[32]. Такого рода функция говорит нам, что мы имеем дело с неким ∠A, синус которого равен 1/2. А так как мы знаем, что sin 30° = 1/2, получаем