Утверждения Кавальери весьма беспокоили геометров. Сложение бесконечного числа имеющих нулевую площадь отрезков не могло дать двумерного треугольника, а бесконечного числа имеющих нулевой объем плоскостей — трехмерный объект. Это была та же проблема: нет логического смысла в сумме бесконечного числа нолей. Тем не менее метод Кавальери всегда приносил правильный ответ. Математики стали игнорировать логические и философские нестыковки при сложении бесконечного числа нолей, особенно поскольку неделимые, или бесконечно малые, как их стали называть, величины наконец позволили найти ответ на давно существовавшую проблему касательной.
Касательная — это прямая, лишь слегка целующая кривую. Для любой точки гладкой кривой, существующей в пространстве, имеется прямая, лишь задевающая кривую, касаясь ее только в одной точке. Это и есть касательная, и математики обнаружили, что она чрезвычайно важна при изучении движения. Например, представьте себе, что вы вращаете мяч на веревочке над головой. Он движется по окружности. Однако если вы внезапно перережете веревочку, мяч улетит по касательной к этой окружности; сходным образом рука питчера в бейсболе движется по дуге в момент броска, но как только он выпустит мяч, тот летит по касательной (рис. 24).
Рис. 24. Полет по касательной
Другой пример: если вы захотите узнать, куда упадет мяч у подножия холма, вы будете искать точку, в которой касательная горизонтальна. Крутизна касательной — ее наклон — обладает в физике некоторыми важными свойствами: например, если у вас имеется кривая, представляющая траекторию движения велосипеда, то наклон касательной к этой кривой в каждой данной точке скажет вам, с какой скоростью двигался велосипед в момент, когда он этой точки достиг.
По этой причине несколько математиков XVII века, такие как Эванджелиста Торричелли, Рене Декарт, француз Пьер де Ферма (прославившийся своей последней теоремой) и англичанин Исаак Барроу, разрабатывали различные способы нахождения касательной в каждой точке кривой. Как и Торричелли, все они столкнулись с проблемой бесконечно малых величин.
Чтобы провести касательную к кривой в данной точке, лучше всего сделать так: выбрать другую точку поблизости и соединить две точки. Полученная прямая не будет в точности касательной, но если кривая не слишком ухабиста, две прямые будут довольно близки друг к другу. Можно предположить, что по мере того как уменьшается расстояние между двумя точками, соединяющая их прямая все ближе совпадет с касательной (рис. 25). Когда точки окажутся на нулевом расстоянии друг от друга, такое приближение даст вам касательную. Конечно, тут есть проблема.
Рис. 25. Аппроксимация касательной
Самой важной особенностью прямой является ее наклон, и чтобы измерить его, математики выясняют, насколько прямая поднимается на определенном расстоянии. Например, представьте себе, что вы едете на восток вверх по холму; при этом на каждую милю, которую вы проехали, приходится подъем на полмили. Наклон холма — это просто подъем (полмили) над горизонтальным расстоянием, которое вы проехали (милей). Математики сказали бы, что наклон холма — 1/2. Это же верно для прямых: чтобы определить наклон прямой, вы смотрите, насколько она переместилась по вертикали (математики обозначают это символом Øy) при заданном перемещении по горизонтали (которое обозначается Øx); таким образом, наклон равен Øy / Øx.
Когда вы пытаетесь рассчитать наклон касательной, процесс приближения вам портит ноль. По мере того как аппроксимация делается все лучше и лучше, точки на кривой, которые вы для нее используете, оказываются все ближе друг к другу. Это означает, что разница по вертикали, Øy, стремится к нолю, как и расстояние по горизонтали между точками, Øx. В результате, когда аппроксимация касательной делается все лучше, Øy / Øx приближается к 0 / 0. Ноль, деленный на ноль, может равняться любому числу на свете. Имеет ли наклон касательной какое-либо значение?
Каждый раз, когда математики пытались иметь дело с бесконечностью или с нолем, они сталкивались с логическими трудностями. Чтобы вычислить объем бочки или площадь параболы, математики складывали друг с другом бесконечные ноли; чтобы найти касательную к кривой, они делили ноль на самого себя. Ноль и бесконечность заставляли простой акт нахождения касательной или определения площади выглядеть противоречащими самим себе. Эти трудности положили бы конец интересным рассуждениям, если бы не одно обстоятельство: эти бесконечности и ноли служат ключом к пониманию природы.
Ноль и тайна математического анализа
Проблемы касательной и площади оказываются в запутанном состоянии из-за одних и тех же трудностей с бесконечностью и нолями. Это неудивительно, поскольку проблема касательной и проблема площади на самом деле одно и то же. Они обе — аспекты дифференциального и интегрального исчисления, научного инструмента, много более мощного, чем все, что было известно ранее. Телескоп, например, дал ученым возможность обнаружить луны и звезды, никогда раньше не наблюдавшиеся. Дифференциальное и интегральное исчисление, с другой стороны, дало ученым способ выражать законы, управляющие движением небесных тел, — и законы, со временем позволившие узнать, как эти луны и звезды возникли. Дифференциальное и интегральное исчисление оказалось истинным языком природы, но оно было пронизано нолями и бесконечностью, которые грозили уничтожить новый инструмент.
Его первооткрыватель едва не умер, не успев сделать первый вдох. Исаак Ньютон родился недоношенным на Рождество 1642 года, таким маленьким, что помещался в кружке объемом в кварту. Его отец, фермер, умер за два месяца до рождения сына.
Несмотря на тяжелое детство[27] и желание матери, чтобы он стал фермером, Ньютон поступил в 1660 году в Кембриджский университет и преуспел. За несколько лет он создал систематический метод разрешения проблемы касательной: теперь он мог вычислить касательную к любой плавной кривой в любой точке. Этот процесс представляет собой первую часть математического анализа, теперь известную как дифференциальное исчисление. Впрочем, способ Ньютона не особенно похож на тот, которым мы пользуемся сегодня.
Стиль дифференцирования Ньютона основывался на флюксиях (производных) — потоках — математических выражений, которые он называл флюентами (переменными). Как пример флюксий Ньютона рассмотрим уравнение y = x2 + x + 1. В этом уравнении флюентами являются x и y; Ньютон полагал, что x и y меняются — текут — с течением времени. Скорость их изменения — их флюксии — он обозначал как x́ и ý соответственно.
Метод дифференцирования Ньютона основывался на одном приеме: он позволял флюксиям изменяться, но изменяться бесконечно мало. По сути, он не давал им времени течь. В обозначениях Ньютона y в этот момент менялся на (y + оý), в то время как x менялся на (x + оx́). (Буква «о» представляла собой количество прошедшего времени; оно было почти нолем, но не совсем, как мы увидим.)
Уравнение тогда принимает вид:
(y + оý) = (x + оx́)2 + (x + оx́) +1.
Раскрытие выражения (x + оx́)2 дает нам y + оý = x2 + 2x(оx́) + (оx́)2 + x + оx́ + 1. Приведение членов дает y + оý = (x2 + x + 1) + 2x(оx́) + 1(оx́) + (оx́)2. Поскольку y = x2 + x + 1, мы можем вычесть y из левой части уравнения и x2 + x + 1 из правой. Это дает нам оý = 2x(оx́) + 1(оx́) + (оx́)2. Дальше следует жульнический прием. Ньютон заявил, что поскольку оx́ на самом деле очень, очень мал, оx́́2 еще меньше и исчезает. По сути это был ноль, и его можно было игнорировать. Это дает нам оý = 2x(оx́) + 1(оx́), а это значит, что оý / оx́ = 2x + 1. Это и есть угол наклона касательной в любой точке кривой (рис. 26).
Рис. 26. Чтобы найти угол наклона в любой точке параболы y = x2 + x + 1, нужно использовать формулу 2x + 1
Рис. 26. Чтобы найти угол наклона в любой точке параболы y = x2 + x + 1, нужно использовать формулу 2x + 1
Бесконечно малый период времени о выпадает из уравнения, оý / оx́ превращается в ý / x́, и об о больше не нужно думать.
Метод давал правильный ответ, но ньютоновское действие исчезновения очень смущало. Если, как настаивал Ньютон, (оx́)2, (оx́)3 и более высокие степени оx были равны нолю, то и само оx́ должно быть равно нолю[28]. С другой стороны, если оx́ — ноль, то деление на оx́, как мы делали в конце, то же самое, что деление на ноль — как и самый последний шаг избавления от о в верхней и нижней части выражения оý / оx́. Деление на ноль запрещено математической логикой.
Ньютоновский метод флюксий был очень сомнителен. Он предполагал незаконную математическую операцию, однако обладал одним огромным преимуществом. Он работал. Метод флюксий не только разрешал проблему касательной, он разрешал и проблему площадей. Нахождение площади под кривой (или прямой, которая является одной из разновидностей кривой) — операция, которую мы теперь называем интегрированием, — всего лишь действие, обратное дифференцированию. Как дифференцирование выражения y = x2 + x + 1 дает уравнение для наклона касательной y = 2x + 1, интегрирование уравнения y = 2x + 1 дает формулу для определения площади под кривой. Эта формула — y = x2 + x + 1; площадь под кривой, ограниченной точками x = a и x = b просто равна (b2 + b + 1) — (a2 + a + 1) (рис. 27). (Технически формула имеет вид y = x2 + x + c, где c есть любая константа. Процесс дифференцирования уничтожает часть информации, так что процесс интегрирования не дает вам точно тот ответ, который вы ищете, если только вы не добавите недостающие данные.)
Рис. 27. Чтобы узнать площадь под кривой y = 2x + 1, используйте формулу y = x2 + x + 1
Математический анализ — это комбинация этих двух инструментов, дифференцирования и интегрирования, в одной упаковке. Хотя Ньютон нарушил некоторые очень важные математические правила, заигрывая с нолем и бесконечностью, математический анализ давал настолько мощные методы вычислений, что ни один математик не смог его отвергнуть.
Природа говорит уравнениями. В этом странное совпадение. Правила математики были выстроены на основании подсчета овец и измерения земельных участков, однако те же самые правила управляют Вселенной. Законы природы описываются уравнениями, а уравнения в определенном смысле — всего лишь инструменты, используя которые, вы вводите числа и получаете другое число. Древние знали несколько этих уравнений-законов, вроде закона рычага, но с началом научной революции уравнения-законы стали появляться отовсюду. Третий закон Кеплера описывал время, которое нужно планетам для обращения по орбите: r3 / t2 = k, где t — время, r — расстояние и k — константа. В 1662 году Роберт Бойль показал, что если взять запечатанный сосуд с газом внутри и начать газ сжимать, то давление внутри возрастет: давление, умноженное на объем, есть константа: pυ = k, где p — давление, v — объем, k — константа. В 1676 году Роберт Гук вычислил силу действия пружины. Она равна отрицательной константе, умноженной на расстояние: f = –kx, где f — сила, x — расстояние, на которое растянута пружина, и k — константа. Эти ранние уравнения-законы были очень хороши для выражения простых зависимостей, однако уравнения имели ограничения — их постоянство, что не позволяло им быть универсальными.
Например, возьмем знаменитое уравнение, с которым все мы знакомимся в школе: скорость, умноженная на время, дает расстояние. Оно показывает, как далеко (на сколько миль — x) вы продвинетесь, если будете бежать с постоянной скоростью v в час на протяжении t часов: υt = x. Это уравнение очень полезно, когда вы подсчитываете, сколько времени займет путь от Нью-Йорка до Чикаго на поезде, который едет со скоростью ровно 120 миль в час. Однако сколько предметов на самом деле двигаются с постоянной скоростью, как поезд в этом математическом примере? Уроните мяч, и окажется, что он падает все быстрее и быстрее. В данном случае уравнение x = vt попросту неверно. В случае падающего мяча x = gt2 / 2, где g — ускорение, вызванное гравитацией. С другой стороны, если вы приложите к мячу увеличивающуюся силу, может оказаться, что x = at3 / 3. Равенство расстояния скорости, умноженной на время, — это не универсальный закон, он действует не при всех условиях.
Исчисление позволило Ньютону объединить все эти уравнения в один великий свод законов — законов, приложимых во всех случаях, при всех условиях. Впервые наука смогла увидеть универсальные законы, лежащие в основе всех этих мелких полузаконов. Несмотря на то, что математики знали о глубинном пороке анализа, связанном с математикой ноля и бесконечности, они быстро восприняли новые математические инструменты. Дело в том, что природа говорит не обычными уравнениями. Она говорит дифференциальными уравнениями, и математический анализ — инструмент, который нужен, чтобы их создавать и решать.
Дифференциальные уравнения отличаются от обычных, с которыми все мы знакомы. Обычное уравнение подобно машине: вы скармливаете машине числа, и она выбрасывает ответ. Дифференциальное уравнение тоже похоже на машину, но на этот раз вы вводите в машину уравнения, а получаете новые уравнения. Загрузите уравнение, описывающее условия проблемы (движется ли мяч с постоянной скоростью или на мяч действует сила), и в результате получите уравнение, в котором закодирован ответ, который вы ищете: двигается ли мяч по прямой или по параболе. Одно дифференциальное уравнение управляет всем неисчислимым количеством уравнений-законов. И в отличие от мелких уравнений-законов, которые то выполняются, то нет, дифференциальное уравнение верно всегда. Это универсальный закон, возможность заглянуть в механизм природы. Математический анализ Ньютона — его метод флюксий — сделал именно это: связал вместе такие концепции, как позиция, скорость, ускорение. Когда Ньютон обозначил положение функцией времени x, он понял, что скорость — это просто флюксия (современные математики называют ее производной от положения по времени: x́), а ускорение — всего лишь производная от скорости по времени: x˝ Переход от положения к скорости и к ускорению и обратно так же прост, как дифференцирование или интегрирование.
Имея в руках такой инструмент, Ньютон смог создать простое дифференциальное уравнение, описывающее движение всех тел во Вселенной: F = mx˝, где F — сила, действующая на тело, а m — его масса. (На самом деле это не вполне универсальный закон, поскольку уравнение верно, только когда масса объекта постоянна. Более общая версия закона Ньютона[29] выглядит так: F = ṕ, где p — количество движения, или импульс тела. Конечно, уравнения Ньютона были со временем усовершенствованы множеством ученых, в том числе Эйнштейном.)
Если у вас имеется уравнение, которое говорит вам о силе, приложенной к телу, дифференциальное уравнение точно сообщит вам, как тело движется. Например, мяч в свободном падении движется по параболе, в то время как пружина без трения вечно раскачивается туда и сюда, а под действием трения медленно останавливается (рис. 28). Какими бы разными ни казались эти исходы, все они описываются одним и тем же дифференциальным уравнением.
Рис. 28. Различные движения, описываемые одним и тем же дифференциальным уравнением
Точно так же, если вам известно, как движется тело — будь это мячик или гигантская планета, — дифференциальное уравнение скажет вам, какого рода сила к нему приложена. (Триумф Ньютона заключался в выведении уравнения, описывавшего силу притяжения и форму орбит планет. Раньше предполагалось, что сила была пропорциональна 1 / r2, и когда из дифференциальных уравнений Ньютона были получены эллиптические орбиты, люди стали верить в правоту Ньютона.) Несмотря на возможности анализа, ключевая проблема сохранялась. Работы Ньютона основывались на очень шатком фундаменте — делении ноля на самого себя. Труды его соперника имели тот же недостаток.
В 1673 году почтенный немецкий юрист и философ посетил Лондон. Его имя было Готфрид Вильгельм Лейбниц. Они с Ньютоном едва не разорвали пополам научный мир, хотя ни один из них не мог разрешить проблему ноля, которой был пронизан математический анализ.