Объясняя мир. Истоки современной науки - Стивен Вайнберг 29 стр.


Наконец, Ньютон переходит к доказательствам из астрономии в Книге III, которая называется «Система мира». В то время, когда вышло первое издание «Математических начал», существовало всеобщее согласие по поводу правильности Первого закона Кеплера, то есть эллиптической формы орбит планет, но все еще оставались некоторые сомнения по поводу Второго и Третьего законов о том, что радиус-вектор от Солнца до планеты описывает равные площади за равные промежутки времени, и о том, что квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит. Кажется, Ньютон зацепился за законы Кеплера не потому, что они были хорошо сформулированы, а потому что подходили к его собственной теории. В Книге III он отмечает, что спутники Юпитера и Сатурна ведут себя соответственно Второму и Третьему законам Кеплера, что наблюдаемые фазы пяти планет (кроме Земли) доказывают, что они обращаются вокруг Солнца, что все шесть планет подчиняются законам Кеплера и что Луна удовлетворяет Второму закону Кеплера{264}. Его собственные тщательные наблюдения кометы 1680 г. показывают, что она тоже движется по коническому сечению: по эллипсу или гиперболе, в любом случае – очень близко к параболе. Из всего этого (и своих более ранних сравнений центростремительного ускорения Луны и ускорения свободного падения тел около поверхности Земли) Ньютон заключил, что существует центральная сила, подчиняющаяся закону обратных квадратов, которая притягивает спутники Юпитера, Сатурна и Земли к планетам, а также все планеты и кометы – к Солнцу. Из того факта, что ускорение производится силой тяжести независимо от природы тела, которое ускоряется, будь это планета, спутник или яблоко, и зависит только от природы тела, производящего силу, и расстояния между ними, а также учитывая тот факт, что ускорение, производимое любой силой, обратно пропорционально массе тела, на которое оно воздействует, Ньютон пришел к выводу, что сила тяготения, действующая на любое тело, должна быть пропорциональна массе тела, что отменяет зависимость от массы тела при расчетах ускорения. Это создает четкое различие между силой тяготения и магнетизмом, который по-разному действует на тела с разным составом, даже когда они имеют одинаковую массу.

Далее в Предложении 7 Ньютон использовал свой Третий закон движения, чтобы определить, как сила притяжения зависит от природы тела, ее производящего. Рассматривая два тела, 1 и 2, с массами m1 и m2, Ньютон показал, что сила притяжения, оказывающая влияние со стороны тела 1 на тело 2, пропорциональна m2, а сила, оказывающая влияние со стороны тела 2 на тело 1, пропорциональна m1. Но в соответствии с Третьим законом эти силы равны по модулю, поэтому каждая из них должна быть пропорциональна m1 и m2.. Ньютон мог проверить Третий закон в случаях столкновения тел, но не при гравитационных взаимодействиях. Как подчеркивал Джордж Смит, только много лет спустя стало возможно подтвердить пропорциональность силы притяжения инертной массе как притягивающего, так и притягиваемого тела. Тем не менее Ньютон пришел к заключению, что «тяготение существует во всех телах повсеместно, и оно пропорционально количеству материи в каждом из них». Именно поэтому произведения центростремительного ускорения различных планет на квадрат их расстояния до Солнца намного больше, чем произведение центростремительного ускорения Луны на квадрат ее расстояния до Земли: все дело в том, что Солнце, которое притягивает планеты, намного массивнее, чем Земля.

Эти результаты Ньютона обычно представляют в виде формулы для силы притяжения F между двумя телами с массами m1 и m2, разделенными расстоянием r:

F = G ∙ m1 ∙ m2 / r²,

где G – это универсальная постоянная, сегодня известная как постоянная Ньютона, или гравитационная постоянная. Ни эта формула, ни постоянная G не появляются в «Математических началах». Даже если бы Ньютон ввел эту постоянную, он не смог бы определить ее значение, потому что не знал массу Солнца и Земли. В расчетах движения Луны или планет G появляется только как множитель для массы, соответственно, Земли или Солнца.

Даже не зная значения G, Ньютон смог использовать свою теорию притяжения, чтобы рассчитать соотношения масс различных тел в Солнечной системе (см. техническое замечание 35). Например, зная отношения расстояний от Юпитера и Сатурна до их спутников и до Солнца и зная отношения орбитальных периодов Юпитера и Сатурна и их спутников, он смог высчитать отношения центростремительных ускорений для спутников Юпитера и Сатурна в направлении их центральных планет к центростремительным ускорениям самих этих планет в направлении к Солнцу. Из этого Ньютон смог вывести соотношение масс Юпитера, Сатурна и Солнца. Поскольку у Земли также есть спутник, ту же самую технику можно в принципе использовать, чтобы высчитать соотношение масс Земли и Солнца. К сожалению, несмотря на то что расстояние между Землей и Луной было хорошо известно благодаря суточному параллаксу Луны, суточный параллакс Солнца был слишком мал, чтобы его измерить, таким образом соотношение расстояний между Землей и Солнцем и Землей и Луной не было известно (как мы уже видели в главе 7, информация, полученная Аристархом, и расстояния, которые он высчитал, пользуясь ею, были безнадежно неточны). Тем не менее Ньютон пошел дальше и рассчитал соотношения масс, используя значение расстояния от Земли до Солнца, которое было, скорее, нижней границей этой величины и составляло примерно половину настоящего значения. В таблице приводятся вычисленные Ньютоном соотношения масс, приведенные в качестве следствия из Теоремы VIII Книги III «Математических начал», в сравнении с современными значениями{265}.



Как видно из этой таблицы, полученный Ньютоном результат для Юпитера совпадает с истинным значением очень хорошо, для Сатурна – неплохо, но для Земли – очень отличается, потому что расстояние от Земли до Солнца не было известно. Ньютон был вполне осведомлен о проблемах, которые возникают по причине неточности в наблюдениях, но, как и большинство ученых до начала XX в., был достаточно небрежен по поводу точности в результатах своих расчетов. К тому же Ньютон, как и его предшественники Аристарх и аль-Бируни, приводил эти результаты с гораздо большим количеством значащих цифр, чем это позволяла точность данных, на которых были основаны расчеты.

Кстати, первая серьезная оценка размеров Солнечной системы была проведена в 1672 г. Жаном Рише и Джованни Доменико Кассини. Они измерили расстояние до Марса, наблюдая разницу в направлении на Марс из Парижа и Кайенны. Поскольку соотношения расстояний от планет до Солнца уже были известны из теории Коперника, таким образом, они получили и расстояние от Земли до Солнца. В современных единицах их результат составлял 140 млн км, что достаточно близко к современному значению в 149 598 500 млн км для среднего расстояния. Более точные измерения были проведены позже путем сравнения наблюдений из различных точек Земли прохождений Венеры по диску Солнца в 1761 и 1769 гг., что дало расстояние между Землей и Солнцем в 153 млн км{266}.

В 1797–1798 гг. Генри Кавендиш наконец сумел измерить силу притяжения между двумя телами в лабораторных условиях, из чего стало возможным вывести значение G. Но Кавендиш вместо этого, используя хорошо известное значение ускорения свободного падения в гравитационном поле Земли у ее поверхности (9,8 м/с²) и известное значение объема Земли, высчитал, что средняя плотность Земли в 5,48 раз превышает плотность воды.

Это соответствовало исторически сложившейся в физике практике – оформлять полученные результаты как отношения или пропорции, а не определенные величины. Например, как мы уже видели, Галилей доказал, что расстояние, пройденное свободно падающими на поверхность Земли телами, пропорционально квадрату времени, но он никогда не говорил, что постоянный множитель при квадрате времени, который дает пройденное расстояние, равен 9,8 м/с за каждую секунду. Как минимум это было связано с тем, что не существовало универсальных единиц измерения длины. Галилей мог получить отношение ускорения к силе тяжести в столько-то локтей в секунду, но что бы это говорило англичанину или даже итальянцу, живущему за пределами Тосканы? Международная стандартизация единиц длины и массы{267} началась в 1742 г., когда Лондонское королевское общество послало во французскую Академию наук две линейки, размеченные стандартными английскими дюймами. Французы разметили эти линейки своими единицами длины и отослали обратно в Лондон. Но общепринятая система единиц измерения появилась только в 1799 г., когда международную метрическую систему начали постепенно принимать в разных странах. Сегодня мы говорим, что G составляет 66,74 триллионных м³/с² на килограмм. Это означает, что небольшое тело массой один килограмм на расстоянии одного метра производит гравитационное ускорение в 66,74 триллионных метра в секунду за каждую секунду.

После изложения теорий движения и притяжения Ньютон в «Математических началах» переходит к разработке некоторых следствий, которые выходят далеко за рамки трех законов Кеплера. Например, в Предложении 14 он объясняет прецессию перигелия орбит планет (для Земли), измеренную аз-Заркали, хотя сам Ньютон не пытается провести количественные вычисления.

В Предложении 19 Ньютон замечает, что все планеты должны быть сплющены у полюсов, поскольку их вращение производит центробежную силу, которая сильнее всего у экватора и уменьшается к полюсам. Например, вращение Земли создает центростремительное ускорение, на экваторе равное 0,034 м/с за секунду. Сравним эту величину с ускорением свободного падения – 9,8 м/с за секунду: центробежная сила, создаваемая вращением Земли, намного слабее силы притяжения, но полностью пренебречь ею нельзя, а Земля действительно имеет почти шаровидную форму, но слегка сплющена у полюсов. Наблюдения в 1740-х гг. в конце концов доказали, что один и тот же маятник раскачивается на экваторе медленнее, чем на более высоких широтах, в точности, как и ожидалось, поскольку на экваторе маятник находится немного дальше от центра Земли, сплющенной у полюсов.

В Предложении 39 Ньютон доказывает, что воздействие силы тяготения на сплющенную у полюсов Землю вызывает прецессию ее оси вращения, ту самую «прецессию равноденствий», которую впервые заметил Гиппарх (у Ньютона был свой особый интерес к этой прецессии: соотнося ее значения с древними наблюдениями звезд, он пытался установить даты предполагаемых исторических событий, например, путешествия Ясона и аргонавтов){268}. В первом издании «Математических начал» Ньютон приводит свои расчеты, которые показали, что доля Солнца в годичной прецессии составляет 6,82° дуги, а воздействие со стороны Луны больше в 6,3 раза, что дает общие точки равноденствия в 50" дуги за год, и это идеально согласуется с годовой прецессией в 50", измеренной к тому времени и близкой к современному значению в 50,375". Это был впечатляющий результат, но позднее Ньютон понял, что найденная им величина прецессии под влиянием Солнца, а значит, и ее вклад в общую прецессию был в 1,6 раза занижен. Во втором издании он скорректировал величину воздействия со стороны Солнца, а также соотношение вкладов Солнца и Луны в общий эффект прецессии, так что их сумма опять же оказалась близкой к 50" и осталась в согласии с наблюдательными данными{269}. Ньютон получил верное качественное объяснение прецессии равноденствий, и его расчет дал ему величину правильного порядка для этого явления, но чтобы добиться необходимого согласия с наблюдениями, ему пришлось прибегнуть ко многим ухищрениям.

Это только один пример того, как Ньютон подгонял свои расчеты, чтобы получать результаты, хорошо согласующиеся с наблюдениями. Наряду с этим примером Р. Вестфол{270} приводит другие, в том числе расчеты Ньютоном скорости звука и его сравнение центростремительного ускорения Луны с ускорением свободного падения у поверхности Земли. Возможно, Ньютон чувствовал, что его настоящие или воображаемые соперники никогда не будут удовлетворены никакими выводами, кроме тех, которые идеально совпадают с наблюдениями.

В Предложении 24 Ньютон излагает свою теорию приливов. Грамм за граммом Луна притягивает океанские воды сильнее, чем твердую Землю, центр которой находится дальше. В то же время Луна притягивает твердую Землю сильнее, чем океанскую воду на противоположной Луне стороне Земли. Таким образом, в океане появляется приливный горб, образующий волну как со стороны, обращенной к Луне, так и с противоположной, где сила притяжения Луны вытягивает Землю из воды. Этим объясняется, почему в некоторых местах высокие приливы отделяются промежутком примерно в 12 часов, а не в 24. Но это явление слишком сложно для теории приливов, которую можно было доказать опытом во времена Ньютона. Он знал, что Солнце, как и Луна, играет роль в образовании приливов. Приливы с максимально высоким уровнем и отливы с минимальным уровнем, известные как сизигийные приливы, возникают в новолуние или полнолуние, то есть когда Солнце, Луна и Земля оказываются на одной линии, взаимно усиливая воздействие силы притяжения. Но самая большая сложность проистекает из того факта, что все гравитационные воздействия в океане тесно связаны с формой континентов и топографией океанского дна, которые Ньютон не мог принимать в расчет.

Подобная ситуация часто возникала в истории физики. Теория тяготения Ньютона успешно объяснила простые явления, такие как движение планет, но не смогла дать количественно оцениваемых характеристик для более сложных явлений, например, приливов. Сегодня мы оказались в той же ситуации с теорией сильного поля, которое сдерживает кварки в протонах и нейтронах внутри атомных ядер, теорией, которая известна как квантовая хромодинамика. Она вполне успешно объясняет определенные процессы при высоких энергиях, такие как образование различных сильно взаимодействующих частиц при аннигиляции быстрых электронов и их античастиц. Это убеждает нас, что теория правильна. Но мы не можем использовать ее, чтобы высчитать точные значения, которые хотели бы объяснить, например, массы протонов и нейтронов, потому что расчеты слишком сложны. Здесь, как и в ситуации с ньютоновской теорией приливов, лучше всего набраться терпения. Физические теории проходят проверку, когда они дают нам возможность надежно рассчитывать достаточное количество простых параметров, даже если мы не можем рассчитать все, что нам захочется.

Книга III «Математических начал» представляет расчеты того, что уже было измерено, и дает прогнозы относительно еще не измеренных параметров, но даже в последнем, третьем издании «Математических начал» Ньютон не смог указать на свои прогнозы, которые были бы подтверждены за сорок лет со времени выхода первого издания. Тем не менее, подводя итоги, можно сказать, что фактическая доказанность теорий движения и притяжения Ньютона перевешивала все. Ньютону не было нужды следовать примеру Аристотеля и объяснять, почему притяжение существует, и он не пытался это сделать. В своем «Общем поучении» Ньютон заключает:

«До сих пор я изъяснил небесные явления и приливы наших морей на основании силы тяготения, но я не указывал причины самого тяготения. Эта сила происходит от некоторой причины, которая проникает до центра Солнца и планет без уменьшения своей способности и которая действует не пропорционально величине поверхности частиц, на которые она действует (как это обыкновенно имеет место для механических причин), но пропорционально количеству твердого вещества, причем ее действие распространяется повсюду на огромные расстояния, убывая пропорционально квадратам расстояний… Причину же этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю»{271}.

Книга Ньютона начинается с подобающей оды авторства Галлея. Вот ее последние строки:

«Начала» описывают законы движения и принципы закона всемирного тяготения, но это не исчерпывает их важность. Ньютон дал будущей науке модель того, какой должна быть физическая теория: набор простых математических принципов, которые точно удовлетворяют широкому спектру различных явлений. Хотя Ньютон точно знал, что притяжение является не только физической силой, именно поэтому его теория была всеобщей – каждая частица во Вселенной притягивает любую другую частицу с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. «Начала» не только вывели законы движения планет Кеплера как точное решение упрощенной задачи – движения точечного источника массы в ответ на притяжение единственной массивной сферы, – они объяснили (хотя в некоторых случаях только качественно) огромное количество других явлений: прецессию равноденствий, прецессию перигелия, траектории движения комет, приливы и отливы, падение яблок{272}. По сравнению с этим все предыдущие физические теории не были столь всеобъемлющими.

После публикации «Начал» в 1686–1687 гг. Ньютон стал знаменитым. Его выбрали членом парламента от Кембриджского университета в 1689 г. и – еще раз – в 1701 г. В 1694 г. он стал смотрителем Монетного двора, где провел реформу Монетной системы Англии. При этом Ньютон сохранил свою должность Лукасовского профессора математики. Когда царь Петр Великий приезжал в Англию в 1698 г., он собирался посетить Монетный двор, чтобы встретиться с Ньютоном, но я не нашел никаких свидетельств того, состоялась ли эта встреча. С 1699 г. Ньютон занял должность управляющего Монетным двором, которая гораздо лучше оплачивалась. Он разбогател и отказался от своего профессорства. В 1703 г., после смерти его старого врага Гука, Ньютон стал президентом Лондонского королевского общества. В 1705 г. Ньютон был возведен в рыцарское достоинство. Когда в 1727 г. он умер от мочекаменной болезни, его удостоили государственных похорон[22], несмотря на то что он отказался принять Святые Дары англиканской церкви. Вольтер писал, что Ньютон «был погребен, как король, облагодетельствовавший своих подданных»{273}.

Назад Дальше