27. Общее понятие о выборочном наблюдении
Статистическое наблюдение можно организо–вать как сплошное и несплошное. Сплошное предус–матривает обследование всех единиц изучаемой со–вокупности явления, несплошное – лишь ее части. К несплошному относится и выборочное наблюде–ние.
Целью выборочного наблюдения является полу–чение информации прежде всего для определения сводных обобщающих характеристик всей изучаемой совокупности. Соблюдение принципа позволяет по–лучить такую совокупность единиц, которая по инте–ресующим исследователя признакам представляет всю изучаемую совокупность, т. е. является репрезен–тативной (представительной).
При проведении выборочного наблюдения об–следуются не все единицы изучаемого объекта, а лишь ее некоторая часть, специальным образом отобранная. Первый принцип отбора – обеспечение случайности – заключается в том, что при отборе каждой из единиц изучаемой совокупности обеспечи–вается равная возможность попасть в выборку. Слу–чайный отбор можно обеспечить только при соблюде–нии определенной методики.
Второй принцип отбора – обеспечение доста–точного числа отобранных единиц – тесно связан с понятием репрезентативности выборки. Понятие репрезентативности отобранной совокупности еди–ниц не следует понимать как ее представительность во всех отношениях. Такое представительство обес–печить практически невозможно. Любое выборочное наблюдение проводится с определенной целью и четко сформулированными конкретными зада–чами, понятие репрезентативности должно быть связано с целью и задачами исследования. Отобран–ная из всей изучаемой совокупности часть должна быть репрезентативной прежде всего в отношении тех признаков, которые изучаются или оказывают су–щественное влияние на формирование сводных обоб–щающих характеристик.
Генеральной совокупностью называется вся изучаемая совокупность единиц, подлежащая изуче–нию по интересующим исследователя признакам. Выборочной совокупностью называется отобранная в случайном порядке из генеральной совокупности не–которая ее часть. Характеристиками генеральной и вы–борочной совокупностей могут служить средние зна–чения изучаемых признаков, их дисперсии и средние квадратические отклонения, мода и медиана и др.
Суть выборочного метода состоит в получении первичных данных, осуществляемых наблюдением выборки с последующим обобщением, анализом и их распространением на всю генеральную совокупность с целью получения достоверной информации об ис–следуемом явлении.
Репрезентативность выборки обеспечивается соблюдением принципа случайности отбора объектов совокупности в выборку.
Цель выборочного метода – сделать вывод о значении признаков генеральной совокупности на основе информации от случайной выборки из этой со–вокупности.
28. Ошибки выборочного наблюдения
Между признаками выборочной совокупности и признаками генеральной совокупности существует некоторое расхождение, которое называют ошибкой статистического наблюдения. Величина возможной ошибки выборочного признака слагается из ошибок регистрации и ошибок репрезентативности.
Под ошибкой репрезентативности (представи–тельства) понимают расхождение между выборочной характеристикой и предполагаемой характеристикой генеральной совокупности. Ошибки репрезентатив–ности бывают случайными и систематическими.
Систематические ошибки связаны с нарушени–ем установленных правил отбора. Случайные ошибки объясняются недостаточно равномерным представлением в выборочной совокупности раз–личных категорий единиц генеральной совокупно–сти. В результате первой причины выборка легко может оказаться смещенной, так как при отборе каждой единицы допускается ошибка, всегда напра–вленная в одну и ту же сторону. Эта ошибка получи–ла название ошибки смещения. Ее размер может превышать величину случайной ошибки. Особен–ность ошибки смещения состоит в том, что, пред–ставляя собой постоянную часть ошибки репре–зентативности, она увеличивается с увеличением объема выборки. Случайная же ошибка с увеличени–ем объема выборки уменьшается.
Ошибки смещения бывают преднамеренными и непреднамеренными. Причиной возникновения преднамеренной ошибки является тенденциозный подход к выбору единиц из генеральной сово–купности.
Случайная ошибка выборки возникает в результа–те случайных различий между единицами, попавшими в выборку, и единицами генеральной совокупности. Теоретическим обоснованием появления случайных ошибок выборки являются теория вероятностей и ее предельные теоремы.
Предельные теоремы теории вероятностей по–зволяют определять размер случайных ошибок вы–борки. Различают среднюю (стандартную) и предель–ную ошибки выборки. Под средней (стандартной) ошибкой выборки понимают расхождение между средней выборочной и генеральной совокупностями. Предельной ошибкой выборки принято считать мак–симально возможное расхождение.
В математической теории выборочного метода сравниваются средние характеристики признаков вы–борочной и генеральной совокупностей и доказывает–ся, что с увеличением объема выборки вероятность появления больших ошибок и пределы максимально возможной ошибки уменьшаются.
Интервал, в который с данной степенью вероят–ности будет заключена неизвестная величина оцени–ваемого параметра, называют доверительным, а ве–роятность Р – доверительной вероятностью.
Наряду с абсолютной величиной предельной ошибки выборки рассчитывается и относительная ошибка выборки, которая определяется как процентное отношение предельной ошибки выборки к соответ–ствующей характеристике выборочной совокупности.
Средняя (стандартная) ошибка выборки зависит от объема выборки и степени вариации признака в ге–неральной совокупности.
29. Определение необходимой численности выборки
Одним из научных принципов в теории выбороч–ного метода является обеспечение достаточного чи–сла отобранных единиц.
Уменьшение стандартной ошибки выборки всег–да связано с увеличением объема выборки. Расчет необходимого объема выборки строится с помощью формул, выведенных из формул предельных ошибок выборки ( Δ ) , соответствующих тому или иному ви–ду и способу отбора. Так, для случайного повторного объема выборки (n) имеем:
откуда
При случайном повторном отборе необходимой численности объем выборки прямо пропорционален квадрату коэффициента доверия и дисперсии вариа–ционного признака и обратно пропорционален ква–драту предельной ошибки выборки. В частности, с увеличением предельной ошибки в 2 раза необхо–димая численность выборки может быть уменьшена в 4 раза. Из трех параметров два (коэффициент дове–рия и предельная ошибка выборке) задаются иссле–дователем. При этом исследователь исходя из цели и задач выборочного обследования должен решить вопрос, в каком количественном сочетании луч–ше включить эти параметры для обеспечения оп–тимального варианта. В одном случае его может устраивать в большей мере надежность полученных ре–зультатов (t), нежели мера точности ( Д ), в другом – наоборот. Сложнее решить вопрос в отношении вели–чины предельной ошибки выборки, так как этим пока–зателем исследователь на стадии проектировки вы–борочного наблюдения не располагает. В практике принято задавать величину предельной ошибки вы–борки в пределах до 10% предполагаемого среднего уровня признака. К установлению предполагаемого среднего уровня можно подходить по-разному: ис–пользовать данные подобных ранее проведенных об–следований или же воспользоваться данными основы выборки и произвести небольшую пробную выборку.
При проектировании выборочного наблюдения предполагаются заранее заданная величина допу–стимой ошибки выборки в соответствии с задачами конкретного исследования и вероятность выводов по результатам наблюдения.
В целом формула предельной ошибки выбороч–ной средней позволяет решать следующие задачи:
1) определять величину возможных отклонений пока–зателей генеральной совокупности от показателей выборочной совокупности;
2) определять необходимую численность выборки, обеспечивающую требуемую точность, при кото–рой пределы возможной ошибки не превысят неко–торой, наперед заданной величины;
3) определять вероятность того, что в проведенной выборке ошибка будет иметь заданный предел.
30. Способы отбора и виды выборки. Собственно случайная выборка
В теории выборочного метода разработаны раз–личные способы отбора и виды выборки, обеспечи–вающие репрезентативность. Под способом отбора понимают порядок отбора единиц из генеральной со–вокупности. Различают два способа отбора: повтор–ный и бесповторный. При повторном отборе каждая отобранная в случайном порядке единица после ее об–следования возвращается в генеральную совокуп–ность и при последующем отборе может снова попасть в выборку. Этот способ отбора построен по схеме «возвращенного шара». При таком способе отбора ве–роятность попасть в выборку для каждой единицы ге–неральной совокупности не меняется независимо от числа отбираемых единиц. При бесповторном отборе каждая единица, отобранная в случайном порядке, по–сле ее обследования в генеральную совокупность не возвращается. Этот способ отбора построен по схеме «невозвращенного шара». Вероятность попасть в вы–борку для каждой единицы генеральной совокупности увеличивается по мере производства отбора.
Генеральная совокупность – вся изучаемая выбо–рочными методами статистическая совокупность объектов и/или явлений общественной жизни, имею–щих общие качественный признаки или количествен–ные перемены.
Выборочная совокупность – часть объектов из ге–неральной совокупности, отобранных для изучениия, с тем чтобы сделать заключение о всей генеральной совокупности. Для того чтобы заключение, полученное путем изучения выборки, можно было распространить на всю генеральную совокупность, выборка должна обладать свойством репрезентативности.
В зависимости от методики формирования вы–борочной совокупности различают следующие основ–ные виды выборки: собственно случайная, механическая, типическая (стратифицированная, районированная), се–рийная (гнездовая), комбинированная, многоступенчатая, многофазная, взаимопроникающая.
Выборка называется собственно случайной, если при извлечении выборки объема все возможные комбинации из элементов, которые могут быть получены из генеральной совокупности объема, имеют равную вероятность быть извлеченными.
Собственно случайная выборка формируется в строгом соответствии с научными принципами и правилами случайного отбора. Для получения соб–ственно случайной выборки генеральная совокуп–ность строго подразделяется на единицы отбора, и затем в случайном повторном или бесповторном по–рядке отбирается достаточное число единиц. Случай–ный порядок – это порядок, равносильный жеребьев–ке. На практике такой порядок лучшим образом обеспечивается при использовании специальных та–блиц случайных чисел.
При бесповторном способе отбора расчет стан–дартной ошибки осуществляется с помощью формулы:
—доля единиц генеральной совокупно–сти, не попавших в выборку.
Формировать выборку в строгом соответствии с правилами случайного отбора практически очень сложно, а иногда невозможно, так как при использо–вании таблиц случайных чисел необходимо пронуме–ровать все единицы генеральной совокупности.
31. Механическая и типическая выборки
При чисто механической выборке вся ге–неральная совокупность единиц должна быть прежде всего представлена в виде списка единиц отбора, со–ставленного в каком-то нейтральном по отношению к изучаемому признаку порядке. Затем список единиц отбора разбивается на столько равных частей, сколь–ко необходимо отобрать единиц. Далее по заранее установленному правилу, не связанному с вариацией исследуемого признака, из каждой части списка отби–рается одна единица. Этот вид выборки не всегда мо–жет обеспечить случайный характер отбора, и получен–ная выборка может оказаться смещенной. Объясняется это тем, что, во-первых, упорядочение единиц генеральной совокупности может иметь эл–емент неслучайного характера. Во-вторых, отбор из каждой части генеральной совокупности при непра–вильном установлении начала отсчета может также привести к ошибке смещения. Типическая (райониро–ванная, стратифицированная) выборка преследует две цели:
1) обеспечить представительство в выборке соответ–ствующих типических групп генеральной совокуп–ности по интересующим исследователя признакам;
2) увеличить точность результатов выборочного об–следования.
При типической выборке до начала ее формиро–вания генеральная совокупность единиц разбивается на типические группы. При этом очень важным момен–том является правильный выбор группировочного признака. Выделенные типические группы могут со–держать одинаковое или различное число единиц от–бора. В первом случае выборочная совокупность фор–мируется с одинаковой долей отбора из каждой группы, во втором – с долей, пропорциональной ее доле в генеральной совокупности. Если вы–борка формируется с равной долей отбора, по суще–ству она равносильна ряду собственно случайных вы–борок из меньших генеральных совокупностей, каждая из которых и есть типическая группа. Отбор из каждой группы осуществляется в случайном (повторном или бесповторном) либо механическом порядке. При ти–пической выборке удается устранить влияние меж–групповой вариации изучаемого признака на точность ее результатов, так как обеспечивается обязательное представительство в выборочной совокупности каж–дой из типических групп. Стандартная ошибка выбор–ки будет зависеть от величины средней из групповых дисперсий.
Поскольку средняя из групповых дисперсий всег–да меньше общей дисперсии, постольку при прочих равных условиях стандартная ошибка типической вы–борки будет меньше стандартной ошибки собственно случайной выборки.
При определении стандартных ошибок типиче–ской выборки применяются следующие формулы:
1) при повторном способе отбора:
2) при бесповторном способе отбора:
– средняя из групповых дисперсий в выбороч–ной совокупности
32. Серийная и комбинированная выборки
Серийная (гнездовая) выборка – это такой вид формирования выборочной совокупности, когда в случайном порядке отбираются не единицы, подле–жащие обследованию, а группы единиц (серии, гнез–да). Внутри отобранных серий (гнезд) обследованию подвергаются все единицы. Серийную выборку практи–чески организовать и провести легче, чем отбор от–дельных единиц. Однако при этом виде выборки, во-первых, не обеспечивается представительство каждой из серий, и, во-вторых, не устраняется влия–ние межсерийной вариации изучаемого признака на результаты обследования. В том случае, когда эта ва–риация значительна, она приведет к увеличению слу–чайной ошибки репрезентативности. При выборе ви–да выборки исследователю необходимо учитывать это обстоятельство.
Стандартная ошибка серийной выборки опреде–ляется по формулам:
1) при повторном способе отбора:
– межсерийная дисперсия выборочной совокупности;
r – число отобранных серий;
2) при бесповторном способе отбора:
где R – число серий в генеральной совокупности.
В практике те или иные способы и виды вы–борок применяются в зависимости от цели и за–дач выборочных обследований, а также возможно–стей их организации и проведения. Чаще всего применяется комбинирование способов отбора и ви–дов выборки. Такие выборки получили название ком–бинированных. Комбинирование возможно в разных сочетаниях: механической и серийной выборки, типи–ческой и механической, серийной и собственно-слу–чайной и т. д. К комбинированной выборке прибегают с целью обеспечить наибольшую репрезентативность с наименьшими трудовыми и денежными затратами на организацию и проведение обследования.
При комбинированной выборке величина стан–дартной ошибки выборки состоит из ошибок на каж–дой ее ступени и может быть определена как корень квадратный из суммы квадратов ошибок соответ–ствующих выборок. Так, если при комбинированной выборке в сочетании использовались механическая и типическая выборки, то стандартную ошибку можно определить по формуле:
где μ1 и μ2 – стандартные ошибки соответ–ственно механической и типической выборок.
33. Многоступенчатая, многофазная и взаимопроникающая выборки.
Особенность многоступенчатой выборки со–стоит в том, что выборочная совокупность формиру–ется постепенно, по ступеням отбора. На первой ступени с помощью заранее определенного спосо–ба и вида отбора отбираются единицы первой ступе–ни. На второй ступени из каждой единицы первой сту–пени, попавшей в выборку, отбираются единицы второй ступени и т. д. Число ступеней может быть и более двух. На последней ступени формируется выбо–рочная совокупность, единицы которой подлежат об–следованию.
Выборочная совокупность формируется на по–следней ступени. Многоступенчатая выборка более гибкая, чем другие виды. Однако она имеет одно важ–ное преимущество: основу выборки при многоступен–чатом отборе нужно строить на каждой из ступеней только для тех единиц, которые попали в выборку, а это очень важно, так как нередко готовой основы вы–борки нет.
Стандартную ошибку выборки при многоступен–чатом отборе при группах разных объемов определя–ют по формуле:
где μ1, μ2 , μ3 ,... – стандартные ошибки на разных ступенях;
где n1, n2 , n3 ,... – численность выборок на соот–ветствующих ступенях отбора. Многофазная выборка состоит в том, что на ос–нове первоначально сформированной выборочной со–вокупности образуют подвыборку, из этой подвыборки – следующую подвыборку и т. д. Первоначальная выборочная совокупность представляет собой первую фазу, подвыборка из нее – вторую и т. д.
Одним из несомненных достоинств многофазной выборки является то обстоятельство, что сведениями, полученными на первой фазе, можно пользоваться как дополнительной информацией на последующих фа–зах, информацией второй фазы – как дополнитель–ной информацией на следующих фазах и т. д.