Стандартную ошибку выборки при многоступен–чатом отборе при группах разных объемов определя–ют по формуле:
где μ1, μ2 , μ3 ,... – стандартные ошибки на разных ступенях;
где n1, n2 , n3 ,... – численность выборок на соот–ветствующих ступенях отбора. Многофазная выборка состоит в том, что на ос–нове первоначально сформированной выборочной со–вокупности образуют подвыборку, из этой подвыборки – следующую подвыборку и т. д. Первоначальная выборочная совокупность представляет собой первую фазу, подвыборка из нее – вторую и т. д.
Одним из несомненных достоинств многофазной выборки является то обстоятельство, что сведениями, полученными на первой фазе, можно пользоваться как дополнительной информацией на последующих фа–зах, информацией второй фазы – как дополнитель–ной информацией на следующих фазах и т. д.
При организации многофазной выборки можно при–менять сочетание различных способов и видов отбора.
Взаимопроникающие выборки – это две или более независимые выборки из одной и той же гене–ральной совокупности, образованные одним и тем же способом и видом. К взаимопроникающим выборкам целесообразно прибегать, если необходимо за корот–кий срок получить предварительные итоги выбороч–ных обследований. Взаимопроникающие выборки эф–фективны для оценки результатов обследования. Если в независимых выборках результаты одинаковы, то это свидетельствует о надежности данных выборочно–го обследования.
Предельные ошибки при различных способах от–бора и видах выборки определяются по формуле:
Δ= tμ;
где μ – соответствующая стандартная ошибка.
34. Общее понятие об индексах и индексном методе
Индекс (лат. Index) – это относительная величи–на, показывающая, во сколько раз уровень изучаемого явления в данных условиях отличается от уровня того же явления в других условиях. Различие условий мо–жет проявляться во времени, в пространстве и в выбо–ре в качестве базы сравнения какого-либо условного уровня.
По охвату элементов совокупности различают индексы индивидуальные и сводные, которые делятся на общие и групповые.
Индивидуальные индексы – это результат сравнения двух показателей, относящихся к одному объекту. В статистико-экономическом анализе дея–тельности предприятий и отраслей широко применя–ются индивидуальные индексы качественных и коли–чественных показателей. Определяются по формуле:
Индекс цен характеризует относительное изме–нение уровня цены единицы каждого вида продукции в отчетном периоде по сравнению с базисным и являет–ся качественным показателем.
Индекс физического объема определяется по формуле:
Сводный индекс характеризует соотношение уровней нескольких элементов совокупности. Если изучаемая совокупность состоит из нескольких групп, то сводные индексы, каждый из которых характеризует изменение уровней отдельной группы единиц, являются групповыми (субиндексами), а свод–ный индекс, охватывающий всю совокупность единиц, – общим (тотальным) индексом. Сводные индексы выра–жают соотношение сложных социально-экономических явлений и состоят из двух частей:
1) из индексируемой величины;
2) из соизмерителя, который называется весом.
Показатель, изменение которого характеризует ин–декс, называется индексируемым. Индексируемые пока–затели могут быть двоякого рода. Одни из них измеряют общий, суммарный размер (объем) того или иного явле–ния и условно называются объемными, экстенсивными. Эти показатели получаются как итог непосредственного подсчета или суммирования и являются исходными, первичными.
Другие показатели измеряют уровень явления или признака в расчете на ту или иную единицу совокупно–сти и условно называются качественными, интенсив–ными: выработка продукции в единицу времени (или на одного работника), затраты рабочего времени на единицу продукции, себестоимость единицы продукции и т. д. Эти показатели получаются путем деления объемных пока–зателей, т. е. носят расчетный, вторичный характер. Они измеряют интенсивность, эффективность явления или процесса и, как правило, являются либо средними, ли–бо относительными величинами.
35. Общее понятие об индексном методе
При использовании индексного метода применя–ется определенная символика, т. е. система условных обозначений. Каждый индексируемый показатель обоз–начается определенной буквой (обычно латинской).
Индивидуальные индексы являются обычными от–носительными величинами, т. е. могут быть названы индексами только в широком понимании этого терми–на.
Индексы в узком смысле, или собственно индек–сы, – это тоже показатели относительные, но особого рода. Они имеют более сложную методику построения и расчета, а специфические приемы их построения и составляют суть индексного метода.
Социально-экономические явления и характери–зующие их показатели могут быть соизмеримыми. Так, объемы продукции или товаров одного и того же вида и сорта, произведенных на разных предприятиях или проданных в разных магазинах, соизмеримы и могут суммироваться, а объемы разных видов про–дукции или товаров несоизмеримы и непосредствен–но суммироваться не могут.
Сводный индекс цен нельзя построить как отно–шение простых сумм:
Первая особенность индексного метода и соб–ственно индексов состоит в том, что индексируемый показатель рассматривается во взаимосвязи с дру–гими показателями.
Умножая индексируемый показатель на другой, связанный с ним, мы сводим различные явления к их единству, обеспечиваем их количественную сравнимость и учитываем их вес в реальном эко–номическом процессе. Поэтому показатели-сомно–жители, связанные с индексируемыми показателями, принято называть весами индексов, а умножение на них – взвешиванием.
Элиминирование влияния изменения весов пу–тем их фиксирования в числителе и знаменателе ин–декса на одном и том же уровне – вторая особен–ность индексов и индексного метода.
Рассматривая проблемы, возникающие при по–строении собственно индексов, ставили задачу дать сравнительную характеристику уровней сложно–го явления, состоящего из разнородных элементов (разные виды продукции и т. п.). Так, Ip должен пока–зать, как изменился в целом уровень цен, т. е. измерить динамику цен различных товаров в виде одного обоб–щающего показателя. Исторически собственно индек–сы появились как результат решения именно этой эко–номической задачи – задачи обобщения, синтеза динамики отдельных элементов сложного явления в одном обобщающем показателе – сводном индексе.
Таким образом, собственно индекс – это отно–сительный показатель особого рода, в котором уров–ни социально-экономического явления рассматрива–ются в связи с другим (или другими) явлением, изменение которого при этом элиминируется. Пока–затели, связанные с индексируемым показателем, используются в качестве весов индекса, а взвешива–ние и элиминирование изменения весов (фиксирова–ние в числителе и знаменателе индекса на одном и том же уровне) составляют специфику собственно индексов и индексного метода.
36. Агрегатные индексы качественных показателей
Каждый качественный показатель связан с тем или иным объемным показателем, в расчете на едини–цу измерения которого он исчисляется (или к единице измерения которого относится).
Сводные индексы качественных показателей должны характеризовать не их изменение вообще применительно к какому-либо произвольному набору товаров или продукции, а изменение цен, себестои–мости, трудоемкости или удельных расходов вполне определенного количества произведенной продукции или проданных товаров. Это и достигается путем взвешивания – умножения уровней индексируемого качественного показателя на значение связанного с ним объемного показателя (веса) – и фиксирова–ния весов в числителе и знаменателе индекса на од–ном и том же уровне. Сопоставление сумм таких про–изведений дает агрегатный индекс. Аналогично могут быть построены агрегатные индексы динамики себе–стоимости и трудоемкости единицы продукции, а так–же индекс удельного расхода сырья или материала.
Основной проблемой при построении этих свод–ных индексов является экономически обоснованный выбор уровня, на котором нужно зафиксировать веса индекса, т. е. в данном случае объем продукции (или товаров) – Q.
Обычно перед сводным индексом динамики ка–чественного показателя ставится задача измерить не только относительное изменение уровня, но и абсо–лютную величину того экономического эффекта, кото–рый получен в текущем периоде в результате этого из–менения: сумму экономии покупателей за счет снижения цен, сумму экономии за счет измене–ния себестоимости и т. п.
Такая постановка задачи приводит к индексам ди–намики качественных показателей с весами текущего периода. Во-первых, исследователя интересует изме–нение себестоимости или трудоемкости той продук–ции, которая выпущена в настоящее время, а не в про–шлом; во-вторых, экономический эффект должен быть увязан с фактическими результатами текущего, отчет–ного, а не предыдущего (базисного) периода.
Взвешивание по весам отчетного (текущего) пе–риода увязывает индекс качественного показателя с показателем экономического эффекта, который по–лучен за счет изменения индексируемого показателя. Поэтому агрегатные индексы динамики каче–ственных показателей строятся и вычисляются обычно с весами отчетного периода:
В этих индексах разность между числителем и знаменателем характеризует: в первом случае – уменьшение либо увеличение затрат на приобретение одного и того же набора товаров в зависимости от знака разности; во втором случае – увеличение или уменьшение расхода материалов на производство одного и того же объема продукции.
37. Агрегатные индексы объемных показателей
Объемные показатели могут быть соизмеримыми (объем продукции или товаров одного вида) и несоиз–меримыми (объем продукции или товаров разного вида – Q). Соизмеримые объемные показатели могут непосредственно суммироваться, и построение агре–гатных индексов не вызывает трудностей.
Для получения общего итога и построения агре–гатного индекса несоизмеримого объемного показа–теля нужно предварительно соизмерить отдельные значения этого показателя. Исходя из экономической сущности явления нужно найти общую меру и исполь–зовать ее в качестве коэффициента соизмерения. Такой общей мерой для объемных показателей являются связанные с ними качественные показатели.
В практике экономической и статистической работы в качестве весов агрегатного индекса объема продукции обычно используются цены. Так строятся индексы объема промышленной и сельскохозяй–ственной продукции, а также индексы физического объема товарооборота.
В ряде случаев изменение объема продукции интересует нас не само по себе, а с точки зрения его влияния на изменение показателя более сложного порядка – общей стоимости продукции, общей ее себестоимости, общих затрат рабочего времени, об–щего объема производства на данном его участке и т. п. В таких случаях выбор весов-соизмерителей определяется взаимосвязью показателей-факторов, от которых зависит более сложный показатель.
Чтобы индекс отражал только изменение индек–сируемого объемного показателя, веса в его числите–ле и знаменателе фиксируются на уровне одного и того же периода. В практике экономической работы в индексах динамики объемных показателей веса обычно фиксируются на уровне базисного пе–риода. Это обеспечивает возможность построения систем взаимосвязанных индексов.
Для индивидуальных объемных показателей веса выбираются на уровне базисного периода.
В отличие от индексов качественных показате–лей, которые исчисляются по сравнимому кругу еди–ниц, сводные индексы объемных показателей в целях полноты и точности должны охватывать весь круг еди–ниц, произведенных (или проданных) в каждом перио–де. В связи с этим возникает вопрос о том, какие зна–чения весов следует брать для тех видов продукции, которые в одном из сравниваемых периодов не про–изводились.
В практике статистики в таких случаях применя–ется два способа. При расчете индексов объема про–мышленной продукции новые ее виды, для которых нет цен базисного периода, оцениваются условно по ценам текущего периода. При расчете же индексов объема проданных товаров используется метод, ос–нованный на условном предположении, что цены на новые товары изменились в той же степени, что и це–ны на сравниваемый круг аналогичных товаров.
38. Ряды агрегатных индексов с постоянными и переменными весами
При изучении динамики экономических явл* ний строятся и исчисляются индексы за ряд последов тельных периодов. Они образуют ряды либо бази ных, либо цепных индексов. В ряду базисных индексе сравнение индексируемого показателя в каждом и дексе производится с уровнем одного и того же п риода, а в ряду цепных индексов индексируемы показатель сопоставляется с уровнем предыдущего п риода.
В каждом отдельном индексе веса в его числител и знаменателе обязательно фиксируются на одном том же уровне. Если же строится ряд индексов, то вес в нем могут быть либо постоянными для всех индексо ряда, либо переменными.
Ряд базисных индексов объема продукции:
Постоянные веса (р0 ) имеет и ряд цепных индесов:
Ряд цепных индексов цен:
Для индексов динамики с постоянными ве–сами имеет силу взаимосвязь между цепными и базисными темпами роста (индексами):
Использование постоянных весов в течение ряда лет позволяет переходить от цепных индексов к базисным, и наоборот. Поэтому ряды индексов объема продукции и объема проданных товаров строятся в статистической практике с постоянными весами. Так, в индексах объема продукции в качестве постоянных весов используются це–ны, зафиксированные на уровне, который был установлен на 1 января какого-либо базисного года. Такие цены, ис–пользуемые в течение ряда лет, называются сопостави–мыми (фиксированными).
Использование в индексах объема продукции (това–ров) сопоставимых цен позволяет путем простого сумми–рования получать итоги за несколько лет. Сопоставимые цены не должны сильно отличаться от действующих (теку–щих). Чтобы иметь возможность исчислять индексы объе–ма продукции за длительные периоды, в течение которых применялись различные сопоставимые цены, продукцию одного года оценивают как в прежних, так и в новых фик–сированных ценах. Индекс за длительный период исчи–сляют цепным методом.
39. Построение сводных территориальных индексов
При построении территориальных индексов, т. е. при сравнении показателей в пространстве (меж–районные, сравнение между разными предприятиями и др.), возникают вопросы о выборе базы сравнения и района (объекта), на уровне которого следует зафик–сировать веса индекса. В каждом конкретном случае эти вопросы нужно решать исходя из задач исследо–вания. Выбор базы сравнения зависит, в частности, от того, будут ли сравнения двусторонними (напри–мер, сравнение показателей двух соседних террито–риальных единиц) или многосторонними (сравнение показателей нескольких территорий, объектов).
При двусторонних сравнениях каждая террито–рия или объект с одинаковым основанием могут быть приняты как в качестве сравниваемого, так и в каче–стве базы сравнения. В связи с этим возникает вопрос о фиксировании весов сводного индекса на уровне того или иного района (объекта). Пусть, например, нужно определить, в какой из двух областей и на сколько процентов ниже себестоимость единицы про–дукции и больше объем ее производства.
Если сравнивать область А с областью Б, доста–точно обоснованный и простой путь состоит в том, чтобы зафиксировать в индексе себестоимости в ка–честве весов объемы продукции в целом по обеим территориям ( Q = QA + QB ), тогда получается:
При многосторонних сравнениях, напри–мер при сравнениях качественных показателей по нескольким областям, нужно, соответственно, рас–ширить и границы территории, на уровне которой фик–сируются веса.
В сводных территориальных индексах объемных показателей в качестве весов могут быть приняты сред–ние уровни соответствующих качественных показате–лей, вычисленные в целом по сравниваемым террито–риям.
40. Средние индексы
В зависимости от методологии расчета индивиду–альных и сводных индексов различают средние ариф–метические и средние гармонические индексы. Други–ми словами, общий индекс, построенный на базе индивидуального индекса, принимает форму среднего арифметического или гармонического индекса.
Идея построения сводного индекса в виде средней величины из индивидуальных (групповых) индексов вполне естественна, ведь сводный индекс является об–щей мерой, характеризующей среднюю величину изме–нения индексируемого показателя, и его величина дол–жна зависеть от величин индивидуальных индексов. А критерием правильности построения сводного ин–декса в форме средней величины (среднего индекса) является его тождественность агрегатному индексу.
Преобразование агрегатного индекса в сред–ний из индивидуальных (групповых) индексов произ–водится следующим образом: либо в числителе, либо в знаменателе агрегатного индекса индек–сируемый показатель заменяется его выражени–ем через соответствующий индивидуальный ин–декс. Если такую замену сделать в числителе, то агрегатный индекс будет преобразован в средний арифметический, если же в знаменателе – то в сред–ний гармонический из индивидуальных индексов.