Гудфеллоу даже не пытался проделать то, чем занимались радиослушатели – уловить транслируемые мысли «передатчика». Они определялись положением колеса рулетки и действительно носили случайный характер, в чем Гудфеллоу убедился сам. Вместо этого он предсказывал ответы радиослушателей, пытавшихся угадать случайную последовательность.
Во время первой передачи психологи обманули радиослушателей, заставив поверить, что передается семь вариантов. На самом деле их было только пять. Для третьей и седьмой «передачи» членов группы просто попросили быстро считать про себя и не думать о двух «транслируемых» вариантах, черном и белом.
Это был тонкий научный эксперимент. Никто из радиослушателей не распознал обмана. Настоящие телепаты написали бы: «Послушайте! Я не получал никакого сообщения о цвете для № 3 и № 7 – кто-то просто считал». Ни одного подобного письма.
Это обстоятельство стало основой открытия Гудфеллоу. Передаваемые последовательности случайны, а догадки слушателей – нет. Итоговый результат был практически одинаковым для каждой передачи. Ответы укладывались в несколько простых закономерностей.
Например, при выборе орла или решки большинство людей первый раз выбирают орла. Причем это явная закономерность. Орла выбирают почти четыре пятых участников эксперимента. Гудфеллоу смог подтвердить гипотезу, проведя собственный эксперимент с участием студентов Северо-Западного университета, покупателей в супермаркете и бизнесменов. Каждому добровольцу предлагалось составить последовательность из пяти орлов или решек (о телепатии речи не шло). Семьдесят восемь процентов испытуемых на первое место последовательности поставили орла.
Гудфеллоу также обнаружил, что 66 процентов ставят на первое место «светлое», а не «темное» в последовательности, состоящей из этих двух элементов; 52 процента предпочли «белое», а не «черное». Это значит, что человек, знакомый с этими предпочтениями, с большей вероятностью угадает «случайный» выбор другого.
По наблюдениям Гудфеллоу, при составлении последовательностей из пяти символов карт Зенера 35 процентов испытуемых ставят на первое место круг. Точность предсказаний того, кто знает эту особенность, будет выше ожидаемых 20 процентов. Карты Зенера использовались в шести экспериментах Zenith.
Кроме того, Гудфеллоу выяснил: некоторые последовательности пользовались у радиослушателей большей популярностью, чем остальные. В большинстве передач использовалась последовательность из пяти элементов, предполагающих выбор одного из двух возможных вариантов. Воспользуемся сокращениями Н и Т, где Н – первый выбор, каким бы он ни был. Самой непопулярной оказалась последовательность HHHHH. Тут нет никакой загадки! Радиослушателей предупредили, что последовательность будет случайной. Пять одинаковых элементов выглядят наименее случайным сочетанием.
Данный факт обращает внимание на разницу между «случайным» и «выглядящим как случайное». Вероятность появления комбинации HHHHH (и TTTTT) при последовательных бросках монеты точно такая же, как и у всех остальных. Нельзя сказать, что она менее случайна – просто выглядит менее случайной. Ощущение случайности зависит от разнообразия внутри последовательности. В шоу Zenith наиболее частый ответ соответствовал схеме HHTHT. То есть, это чередование Н и Т, с дополнительной вставкой Н, чтобы нарушить ритм. Такое нарушение ритма характерно для всех наиболее популярных ответов.
Радиослушатели предпочитали по возможности чаще переключаться между орлом и решкой. При пяти попытках ближе всего к 50-процентному соотношению можно прийти в сочетаниях три на два, в пользу того или другого. Все самые популярные последовательности удовлетворяли этому требованию.
Кроме того, радиослушатели предпочитали хорошо перетасованные последовательности (такие, как HHTTH или HTTHT) более однородным, например, HHHTT или HHTTT. Но чередование не могло быть слишком явным. Самой непопулярной последовательностью из категории три к двум оказалась последовательность с идеальным чередованием HTHTH.
Радиослушатели выбирали последовательность HHTHT почти в 30 раз чаще, чем TTTTT. Эта особенность наблюдалась во всех передачах цикла, независимо от характера транслируемых последовательностей. Отдельный слушатель мог присылать разные ответы для разных передач, но в целом популярность тех или иных схем не менялась. Люди снова и снова выбирали одни и те же последовательности, не осознавая этого.
Анализ объяснял полученный результат без телепатии. Когда правильная последовательность начиналась с популярного символа и далее следовала популярной схеме, число правильных ответов было велико. Когда же последовательность не выглядела случайной, начинающие американские телепаты проигрывали.
21 ноября, когда использовались круги и кресты, правильной последовательностью была OOOOOX. Большинство радиослушателей ошиблись в четырех случаях из шести. Похоже, это может служить свидетельством «отсутствия экстрасенсорного восприятия».
12 декабря радиослушателям пришлось выбирать между орлом и решкой, и правильный ответ был TTHHH. Из-за того, что подавляющее большинство на первое место обычно ставит орла, число правильных ответов оказалось крайне низким.
Гудфеллоу показал, что 10 из 15 транслировавшихся последовательностей относятся к популярным, а пять к непопулярным. Это объясняет высокий процент правильных ответов. Ситуация вполне могла оказаться обратной, будь последовательности непопулярными.
Как бы то ни было, никто, даже бизнесмен Макдоналд не понял ценности открытия Гудфеллоу: тот придумал способ предсказать мысли публики.
Случайное, произвольное и искусственное окружает нас повсюду, причем иногда очень важна разница. Все мы постоянно участвуем в экспериментах Zenith, и ставка в игре – наша частная жизнь, здоровье и даже сама личность. Я имею в виду пароли для входа в цифровой мир. Пользователь компьютера убежден, что имеет возможность абсолютно произвольно выбирать пароль. Но с практической точки зрения это не так. Он ограничен тем, как работает его мышление, а ведь оно не слишком отличается от мышления других людей.
И дело не в выборе распространенных паролей, использование которых настоятельно не рекомендуется. Более серьезная проблема в том, что даже разумные пользователи предпочитают одинаковые приемы усложнения кода (например, добавление в конце «123», чередование прописных и строчных букв и другие, чуть более сложные методы). Это сокращает почти бесконечное число потенциальных вариантов до поддающегося обработке количества. Программы взлома паролей делают то же самое, что и Гудфеллоу, только в миллиарды раз быстрее.
Какое-то время компания AT & T, представляя беспроводное будущее, не исключала телепатии. Тортон Фрай, глава математического подразделения Bell Labs и человек, пригласивший Клода Шеннона, относился к меньшинству ученых, упрямо веривших, что Дж. Б. Райн действительно на что-то наткнулся. В 1948 г. в Bell Labs построили машину для экстрасенсорного восприятия. Это устройство генерировало случайные последовательности, которые должен был угадать предполагаемый экстрасенс. Машина заняла место карт Зенера и могла исключить возможность жульничества или неосознанной подсказки, что ставило под сомнение результаты исследований Райна. Сам Райн видел машину во время визита в Bell Labs и буквально влюбился в нее. И тут же написал президенту Университета Дьюка, надеясь, что тот закажет для него в Bell Labs точно такую же. Но этого не случилось. В настоящее время бесплатные программные генераторы случайных чисел можно найти в интернете, но тогда это были дорогостоящие устройства.
В 1953 г., когда Шеннон создал машину для чтения мыслей, в Bell Labs сосредоточились на более скромной цели: разработать кнопочную клавиатуру для телефонов будущего. Задание поручили известному промышленному дизайнеру Альфонсу Чапанису, которому отведена важная роль в нашей истории.
Чапанис известен как основатель эргономики, науки о человеческих факторах. Известная легенда гласит, что исполнительный директор компании Chrysler Линн Таунсенд однажды отозвал Чапаниса в сторону и поинтересовался его мнением о новой спортивной модели. Рулевая колонка была снабжена декоративной втулкой (острым выступом) приблизительно в одном или двух дюймах ниже рулевого колеса.
– Мистер Таунсенд, знаете, что вы сконструировали? Стрелу, направленную прямо в сердце водителя.
– Док, но она продается, – ответил Таунсенд.
Чапанис сделал, по крайней мере, два изобретения, определивших облик нашей цивилизации. Он определил соответствие рукояток и конфорок на кухонной плите. А его удобный дизайн клавиатуры до сих пор используется в сенсорных экранах смартфонов. Чапанис был убежден: клиентам не нужно рассказывать, что для них было бы лучше всего. Он искал работающее решение. Он протестировал все возможные конструкции рукояток для кухонных плит и клавиатур для телефонов, чтобы выяснить, какой дизайн вызывает меньше всего ошибок. Его подход носил экспериментальный характер, использовались статистические методы и инструменты, разработанные психологами. Важное место среди них занимало исследование методом случайной выборки. Тестируемые конструкции распределялись между испытателями случайно, чтобы исключить путаницу и ошибки.
Для метода случайной выборки необходимы случайные последовательности, и Чапанис заметил, что составить их не так-то просто. В 1952 г. он выполнил необычный эксперимент. Чапанис предложил 12 добровольцам из Университета Джонса Хопкинса написать длинные последовательности случайных чисел. Им выдали четыре листа, расчерченных на квадраты, и проинструктировали: надо писать каждую цифру в квадрате.
«Располагайте цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, и 9 в случайном порядке. Каждая цифра должна использоваться приблизительно одинаковое число раз, но в порядке их следования не должно быть регулярности или закономерности. Случайная последовательность абсолютно беспорядочна, в ней нет какой-либо системы».
Каждый из участников эксперимента записал 2520 цифр – трудоемкая задача, потребовавшая больше часа времени. Как и ожидал Чапанис, у добровольцев не очень хорошо получалось имитировать случайность.
Несмотря на инструкции, некоторые цифры выбирались чаще остальных. Практически у всех реже всего встречался 0. Остальные предпочтения оказались разными. Один участник эксперимента полюбил 3, другой 8.
Когда Чапанис проанализировал последовательные пары и тройки цифр, проявились определенные закономерности, причем нередко одинаковые у всех испытуемых. Вот десять наименее популярных пар (в порядке уменьшения популярности):
66 99 00 11 33 44 88 22 77 55
Все это пары одинаковых цифр.
А вот десять самых популярных пар цифр:
32 43 21 76 65 10 31 87 86 54
Видите закономерность? Во всех парах, кроме двух, вторая цифра на единицу меньше первой.
Аналогичные закономерности обнаружились и для троек цифр. Редко встречались сочетания одинаковых цифр (такие как 888). Это значит, что в последовательностях, созданных добровольцами, повторения одинаковых цифр встречались реже и были короче, чем в настоящих случайных последовательностях. Популярными, хотя и в меньшей степени, оказались также и возрастающие серии, такие как 34 или 234. Возможно, участникам эксперимента казалось, что убывающие серии выглядят более случайными, чем возрастающие. Сочетание 321 так не выделяется среди строки цифр, как 123.
Искусственные последовательности цифр оказались неслучайными, и поэтому их можно было предсказать. Чапанис вычислил: зная предыдущую цифру, он в 17 процентах случаев способен предсказать следующую. Это гораздо больше, чем 10 процентов при произвольном угадывании. Используя две последние цифры, он смог дать правильный ответ в 28 процентах случаев – почти в три раза выше ожидаемого. Если бы с такой же точностью мы могли предсказать числа, выпадающие при игре в рулетку, то быстро сколотили бы себе состояние (или… нас быстро выпроводили бы из казино).
Чапанис разделил добровольцев на две группы – «изощренных» и «относительно неизощренных». Группа изощренных, глубже знавших математику, чуть лучше имитировала случайность, однако делала те же самые ошибки, что и остальные.
Но самым удивительным открытием стало то, что длинные последовательности, например, из восьми цифр, в точности повторялись с интервалом в несколько сотен цифр. Один из добровольцев повторил последовательность 21531 четыре раза, а последовательность 21924 три раза. Другой повторил 43876538 и еще четыре последовательности из восьми цифр. Эти совпадения невозможно объяснить случайностью, скорее, амнезией или лунатизмом. Испытуемые попадали в мыслительную «колею» и повторялись, сами не осознавая этого, подобно чудаковатому дедушке, который каждый День благодарения рассказывает одну и ту же шутку.
Исследование Чапаниса представляло собой эксперимент по имитации случайности. В настоящее время этот термин используется, когда добровольцам предлагают составить случайную последовательность. Смысл в том, чтобы исследовать неспособность человека вести себя случайно.
Среди всех экспериментов, проведенных в психологических лабораториях, опыт Чапаниса имеет особое значение. В нем использовались десятичные числа, с которыми мы сталкиваемся в повседневной жизни. Когда мошенник подделывает финансовые данные, он должен придумать последовательность чисел, которые выглядят нормальными и не вызывают подозрений, – иными словами, случайную. Теперь нам известно, что придуманные мошенником числа имеют признаки, подобные тем, что описал Чапанис. В последние годы характерные особенности нарисованных цифр стали ценным ключом к аутентификации затрат, продаж, налогов, результатов выборов и других важных данных.
Как бы то ни было, Чапанис не предвидел подобного применения своих выводов, его эксперимент по имитации случайности не привлек заслуженного внимания. Чапанис описал свой опыт в иллюстрированном докладе, прочитал его на научной конференции; восьмой абзац выступления был опубликован в журнале American Psychologist за 1953 г. Затем Чапанис занялся эргономикой.
Он в буквальном смысле изображал Джеймса Бонда. Он вел двойную жизнь американского шпиона, путешествуя по странам советского блока – участвовал в конференциях по промышленному дизайну, собирая информацию для своих хозяев. В этом ему помогала русскоговорящая жена. Статью, посвященную случайным числам, Чапанис опубликовал, только выйдя на пенсию. Так и вышло, что полный отчет об эксперименте 1952 г. появился лишь в 1995 г. в журнале Perceptual and Motor Skills. Зато к тому времени интерес к имитации случайности уже оказался значительным и постоянно рос.
На самом деле история эксперимента по имитации случайности начинается с учебника «Теория вероятности» Ганса Рейхенбаха, опубликованного в 1934 г. (на английском в 1949 г.). Рейхенбах, известный специалист в области философии науки, вероятно, первым сформулировал два положения. Одно из них гласит: «Люди, не знакомые с математикой… бывают потрясены кластеризацией, которая встречается» в истинной случайной последовательности. Когда бросают монету, орел подряд выпадает и дольше, и чаще, чем можно предположить. Второе положение Рейхенбаха таково: люди, «которых просят придумать искусственную серию событий, выглядящих… хорошо перетасованными», создают слишком много чередований. Придумывая результаты подбрасывания монеты, мы склонны чередовать орел и решку, забывая включить достаточное количество групп. Это ярко продемонстрировано в радиопередачах Zenith и в исследовании Чапаниса.
В 1972 г. голландец В. А. Вагенаар сделал обзор 15 публикаций, посвященных экспериментам по имитации случайности. Вагенаар жаловался: «Нет никакой возможности объединить результаты… в непротиворечивую теорию». Исследователи подходили к этому необычному предмету с разных позиций. Они предлагали добровольцам имитировать случайные последовательности при бросании монеты или игральной кости, сформировать их из цифр или букв алфавита, а также ничего не обозначающих слогов. Испытуемые записывали результаты, произносили их вслух или нажимали кнопки. В одних экспериментах испытуемые могли просмотреть список своих предыдущих действий, в других нет. Хотя им прямо говорили, что их действия должны быть «случайными», в инструкциях не всегда содержалось определение этого понятия (правда, математическая или философская дискуссия о значении термина «случайность» потребует книги гораздо большего объема, чем эта). Кроме того, в экспериментах использовались разные и не всегда совместимые методы оценки результатов.
Да, получилась «вавилонская башня», однако в некоторых областях наблюдалось полное согласие. Почти во всех статьях подтверждались оба положения Рейхенбаха. Перемешивание плохо работало при выборе из двух вариантов (например, орел или решка) и еще хуже – при множественном выборе (десятичные цифры или буквы алфавита). При попытке написать строчку из случайных букв участники экспериментов злоупотребляли буквами, которые чаще всего встречаются в словах (согласные M, N, R, S, и T). Групп, состоящих из одной и той же буквы (FFF), старались избегать, зато отдавали предпочтение парам, составленным из соседей по алфавиту (AB или FE). Это согласуется с выводами Чапаниса о расположении цифр в порядке возрастания или убывания.
Случайность – это непредсказуемость. Можно подойти с противоположной стороны: любое не случайное человеческое действие можно в определенной степени предсказать. Несколько лет подряд математик Теодор Хилл проводил в студенческой аудитории эксперимент по имитации случайности. Он давал студентам домашнее задание: 200 раз бросить монету и записать результат. Приблизительно половине класса (тем, у кого девичья фамилия матери начиналась с букв от M до Z) было велено не бросать монету, а просто сочинить результат. В любом случае данные следовало представить на следующем занятии.
Хилл поражал студентов тем, что с одного взгляда на отчеты делил их на две стопки. Точность, с которой он отличал настоящие результаты от фальшивых, была близка к 100 процентам.