Представляется, что эти раковины сформировались по законам настолько простым, в такой гармонии со своим материалом, окружающей средой и всеми внутренними и внешними силами, воздействию которых они подвержены, что ни одна из них ни в чем не уступает другой и каждая одинаково приспособлена для выживания.
И у радиолярий, и у другой группы планктона, фораминифер, по словам Томпсона, «мы можем наблюдать практически полную картину всех трансформаций, ведущих от формы к форме, всю систему ветвлений эволюционного дерева, словно никакие из форм никогда не исчезали и все переплетения жизни, прошлой и настоящей, проявлены как никогда.
Увлечение человека спиралями – давнее и неизменное. Изображения спиралей, хотя и довольно редко, встречаются на наскальных рисунках, сделанных более 20 000 лет назад, и уже гораздо чаще в изображениях различных культур доисторического и исторического периода. Наиболее древние из них – это обычно вариации на тему «простой» спирали (спирали Архимеда). Параболическая спираль (спираль Ферма) украшает предметы возраста примерно 6000 лет, в том числе, например, ягодицы глиняной фигурки женщины из долины Дуная. Тройные спирали выгравированы на огромном камне у входа в Ньюгрейндж – культовое сооружение, построенное в Ирландии около 5000 лет назад. Одно из самых впечатляющих сооружений человека, 52-метровый минарет Малвия, построенный в иракском городе Самарра между 848 и 852 гг. и сохранявшийся без серьезных разрушений до вторжения американских войск в 2003 г., имеет форму конусообразной спирали.
Можно предложить несколько объяснений нашей увлеченности спиралями. Во-первых, даже до того, как наука продемонстрировала, насколько они распространены в природе, человек интуитивно чувствовал в них проявление действующих в природе сил. Спираль как форма выражения постоянного движения приближается к метафоре самой жизни, сформулированной Карлом Вёзе: «Организмы – устойчивые узоры в турбулентном потоке». Как бы то ни было, если обратиться исключительно к фактическим доказательствам и статистике, распространенность спиралевидной формы – от цветной капусты до циклонов и от морских раковин до формирования звезд – просто поражает. Сегодня мы знаем, что спиралевидные формы присутствуют и там, где они не видны глазу: например, экмановская спираль в структуре ветра или воды под морским льдом или вихри Ленгмюра в воде на глубине. По крайней мере одно из колец Сатурна имеет форму спирали.
«Представьте, что ребенок играет возле лесного ручья, тыкая палкой в небольшое завихрение в течении, разрушая тем самым этот водоворот. Но завихрение снова восстанавливается. Ребенок снова нарушает его. Водоворот снова восстанавливается, и увлекательная игра продолжается. Вот и объяснение! Организмы – устойчивые узоры в турбулентном потоке» (Карл Вёзе).
Книга Томпсона расширяет представление читателя о разновидностях спиралей и других формах, воплощенных в живых организмах. Среди работ, способных вызвать изумление, она не имеет себе равных. Но как объяснение процесса эволюции и развития жизни она, однако, неадекватна. Томпсон и сам признавал, что находится лишь на «подступах» к теме. Но, когда Томпсон в последние годы жизни готовил переиздание книги, другие ученые уже начали по-новому понимать такие процессы, как метаболизм, фотосинтез, наследственность и развитие. Зарождалась молекулярная биология.
Генетик Джек Шостак (2010) предположил, что «простые физические силы», подобные тем, которые заставляют формироваться и разделяться мембраны клеток, могут еще сыграть определенную роль в попытках реконструировать происхождение жизни.
Одним из ключевых достижений этой революции, без сомнения, стало открытие в 1953 г. структуры ДНК и понимание того, что эта двойная спираль несет в себе «проект» любого живого существа. Изображение двойной спирали стало уже настолько обыденным, что мы иногда забываем, какое огромное значение имеют эти две спирали: сама жизнь во всем ее безграничном многообразии, развивающаяся поколение за поколением из относительно простой и, без сомнения, прекрасной геометрии «апериодического кристалла», в котором сгруппированные в шестигранники атомы объединены в пары оснований, словно образующие ступени винтовой лестницы.
Раковина наутилуса
А теперь представьте себе возраст ДНК! Она сформировала генетический код последнего общего предка, жившего между 3,8 млрд и 3,5 млрд лет назад. Редкие скалы на поверхности Земли могут похвастаться столь древним возрастом. ДНК древнее их всех. Вот вы сейчас набрали горсть пляжной гальки, и некоторым из этих гладких камушков, возможно, сотни миллионов лет, но ваша рука была сформирована с помощью механизма, несравненно более древнего. ДНК одновременно и очень молода: в каждом живом организме она постоянно синтезируется из других химических веществ. Со временем в кодирующих последовательностях и белках происходят изменения, иначе эволюция была бы невозможна, но сохраняется и определенная преемственность. У новорожденного младенца и трихоплакса (это еще более дальний родственник человека, чем, например, обыкновенные губки) есть несколько практически идентичных последовательностей, например ген p53, подавляющий образование опухолей.
Фраза «апериодический кристалл» используется в книге Эрвина Шрёдингера «Что такое жизнь?» (1944). «Шестигранники» – нуклеотиды аденин (А), гуанин (Г), тимин (Т) и цитозин (Ц). В парах (А – Т и Г – Ц) они формируют пары оснований «цифрового кода» жизни.
И конечно, нельзя не упомянуть о размере ДНК. Если ДНК одной клетки вашего тела – почти 3,2 млрд нуклеотидных оснований, стиснутых в 46 хромосомах, – «распаковать» и объединить в одну молекулу, она была бы почти два метра длиной. В теле человека около 10 трлн молекул (это не считая микробных организмов-партнеров, которых в десятки раз больше); получается, что ДНК одного человека хватило бы, чтобы несколько сотен раз покрыть расстояние от Земли до Солнца (149 млн км). ДНК нескольких тысяч людей, объединенные в цепочку, могли бы достать до ближайшей звезды.
Самое древнее из обнаруженных на настоящий момент осадочных скальных образований – Нуввуагиттук на севере Квебека (Канада) – имеет возраст примерно 4,28 млрд лет, но большая часть поверхности Земли гораздо моложе.
Следствием такого большого числа пар оснований генома является если не бесконечная, то почти фантастическая возможность вариаций их последовательностей. Чтобы понять, как много может быть таких вариаций, представьте какое-нибудь выдуманное животное – вавилонская рыбка из рассказов Дугласа Адамса, пожалуй, подойдет – и представьте, что оно имеет такой же по длине геном, как и человек (это отнюдь не безосновательное предположение: геном двоякодышащей рыбы мраморного протоптера и некоторых видов саламандр в 40 раз длиннее). Так вот, давайте представим, что для вариаций будет использоваться только 1 % ее ДНК, если выбирать только из некодирующих секций (подобные эксперименты проводились на мышах без каких-либо очевидных негативных последствий). Общее возможное число вариаций составляет 232 000 000 или 109 632 960. Чтобы вы могли составить представление об этих цифрах: видимая Вселенная способна вместить не более плотно прилегающих друг к другу песчинок. Ближайшая точная копия вас может находиться всего-то в каких-то метрах от вас.
Попытки внедрить закодированный текст в некодирующие последовательности ДНК предпринимались неоднократно. В 2007 г. группа ученых под руководством Масару Томита вписала формулу в геном бактерии, в 2010 г. команда под руководством Крейга Вентера объявила, что им удалось закодировать три коротких текста в их «новую» бактерию, в том числе фразу Джеймса Джойса: «Жить, ошибаться, падать, торжествовать, воссоздавать жизнь из жизни». Место для записи текста в 1 % генома вавилонской рыбки гораздо больше, чем у бактерии, хотя, может быть, и его не хватит для всех книг в вавилонской библиотеке Хорхе Луиса Борхеса.
Другие две фразы: «Видеть вещи не такими, какие они есть, а какими они могли бы быть» из биографии физика Роберта Оппенгеймера и «Того, что я не могу построить, я не могу и понять» Ричарда Фейнмана.
Но оставим все эти баснословные цифры; главное, что именно различия в геномах, фактически кодирующих явления окружающего мира, делают возможным разнообразие живых существ – от миноги до Леди Гага. А любые попытки как-то более подробно описать это явление оказываются искусственными и напыщенными. Вот, например, что пишет редактор журнала Wires Кевин Келли, самопровозглашенный Главный диссидент: «ДНК создает величественных тридцатиметровых зауроподов, ювелирную утонченность переливчатых зеленых стрекоз, застывшее совершенство лепестка белой орхидеи и, конечно, сложнейший мозг человека». Гораздо ярче и короче юмористическое высказывание Джорджа Уолда (получившего Нобелевскую премию за работу в области физиологии и эволюции зрения): «Если геному хочется поплавать в океане, он становится рыбой, если ему хочется полетать в воздухе – птицей. А если геном желает получить гарвардский диплом, он становится человеком».
Конечно, Уолд говорил образно. Он не имел в виду, что у генома или составляющих его генов есть воля. Но концепция, что гены руководят всем на свете, оказалась очень влиятельной. Ее можно вывести из «центрального догмата молекулярной биологии», как его назвал один из первооткрывателей ДНК Фрэнсис Крик. Этот догмат заключается в том, что ДНК «передает инструкции» РНК, а РНК формирует белки, создающие организм, причем информация передается только в одном направлении. Наиболее запоминающимся образом эту идею выразил Ричард Докинз в своей книге «Эгоистичный ген»{30}:
Сейчас гены живут гигантскими колониями, в безопасности внутри огромных неуклюжих созданий, в изоляции от окружающего мира, сообщаясь с ним сложными кривыми путями, манипулируя им с помощью дистанционного управления. Они во мне и в вас, они создали нас, и наше тело, и наш мозг; и их сохранение – главная причина нашего существования.
Другие считают, что это искаженная картина окружающего мира. По их мнению, естественный отбор действует на уровне организма (или, еще точнее, фенотипа: совокупности свойств и характеристик организма), а не генов. С этой точки зрения гены служат для сохранения и передачи знаний о мире, а не контролируют его. Так, физиолог Денис Нобл считает, что заявления Докинза – всего лишь фигура речи, а не оценочное суждение и предлагает переформулировать это описание следующим образом:
Сейчас гены оказались в ловушке: они целыми колониями заперты внутри высокоинтеллигентных существ, формируются окружающим миром, сообщаются с ним с помощью сложных процессов, благодаря которым возможно функционирование. Они во мне и в вас; мы – система, позволяющая читать их код, а их сохранение полностью зависит от той радости, которую мы получаем от процесса самовоспроизводства. Мы – главная причина их существования.
Кто бы ни был прав в этом споре, сейчас очевидно, что карта генома, составить которую ученые пытались в рамках проекта «Геном человека», не является полной картой жизни. Можно лучше понять эволюцию, развитие и функционирование организма, если принимать в расчет ряд других факторов, в том числе и способы выражения генов в эволюционных и физиологических процессах, а также все процессы взаимодействия, которые происходят между белками в клетке (совокупность которых известна как протеом). Но даже если временно забыть обо всех этих факторах, сам геном, как оказалось, таит в себе сюрпризы, о которых мы даже не подозревали несколько десятков лет назад. С одной стороны, эпигенетика – новое направление в науке – продемонстрировала, что в клетке генетический код считывается скорее как рукопись, которую еще надо истолковать, а вовсе не как компьютерная программа, то есть нельзя ожидать получения абсолютно идентичного результата каждый раз. С другой стороны, значительные участки ДНК, которые мы считали критически важными, как оказалось, таковыми не являются.
Первоначально ученые считали, что практически все части ДНК генома человека кодируют белки, из которых состоит наше тело. В начале XXI в., однако, было установлено, что только 2 % отвечают за кодирование белков. Какие-то части, судя по всему, выполняют другие функции, но значительная часть ДНК вообще, похоже, не делает ничего{31}. Более того, как минимум 8 % состоит из копий генов чужеродных захватчиков. Эти гены когда-то принадлежали эндогенным ретровирусам (ЭРВ) – наиболее недавние представители этой группы включают вирус иммунодефицита человека, вызывающий СПИД, – но постепенно интегрировались в организмы-носители и соответственно в их потомков. В отличие от ВИЧ, гены таких ЭРВ сейчас либо безобидны, либо (как мы увидим) выполняют важные функции для поддержания в порядке своего нового дома.
Получается несколько пугающая, но интересная и даже в каком-то смысле прекрасная картина. С одной стороны, геном человека – так же как и геномы практически всех других животных и растений – несет следы беспощадных нападений вирусных «автоматов», которые отражались в течение десятков и сотен миллионов лет. Как в очередной раз напоминает нам всплеск ВИЧ в Африке, особенно в южной части континента, ретровирусы могут произвести в рядах противника настоящее опустошение. Не исключено, что другие вирусы могут оказаться даже еще более опасными и вызвать, например, глобальную эпидемию гриппа. В плохой день слова молекулярного биолога периода холодной войны Джошуа Ледерберга не кажутся таким уж преувеличением: «Единственной серьезнейшей угрозой продолжающемуся доминированию человека на этой планете является вирус». Можно спорить, относятся ли эти слова к естественным вирусам. А вот искусственно созданные супергриппы, похожие на оспу, и другие вирусы действительно могут оказаться причиной беспрецедентной катастрофы.
С другой стороны, есть и повод для оптимизма, связанный с адаптивной способностью многих видов (если не особей) в случае таких «нападений». В самих вирусах тоже есть зловещая красота. Удивительно, что такие микроскопические и на первый взгляд простые агенты, многие из которых упакованы в прозрачные двадцатигранники или, подобно миниатюрной версии Iridogoria, в спиралевидные «раковины», эксплуатируют гораздо более сложные организмы, включая человека. Вирусы – удивительные механизмы. Они способны эволюционировать в миллионы раз быстрее, чем их носители. Они используют более разнообразные биохимические процессы, недоступные клеточной жизни, и могут хранить свою генетическую информацию с помощью одноцепочечной ДНК, двухцепочечной ДНК и РНК. Вероятно, существует несколько сотен миллионов различных видов вирусов. Одних только вирусов, поражающих бактерии (бактериофагов), больше, чем всех других форм жизни вместе взятых. Вирусов на Земле больше, чем звезд во Вселенной. Они обнаруживаются во всех сферах обитания – от горячих источников до пустынь и от подледных озер Антарктики до каменных пород на глубине 2000 м под землей – везде есть жизнь, которую вирусы могут заражать. По словам молекулярного биолога Луиса Вильярреала, вирусы «лидируют среди всех эволюционирующих биологических объектов».
У многих вирусов, в том числе вируса герпеса, есть капсиды (белковые оболочки) в форме икосаэдра, то есть правильного двадцатигранника. Такую форму можно создать с помощью использования множества молекул одного и того же белка, так что для ее кодирования требуется совсем немного места в геноме вируса. У многих вирусов капсиды имеют форму спирали. Вместе с тем оболочки некоторых вирусов очень странные по форме: одни напоминают бутылку, другие имеют по хвосту с каждой стороны, или форму капли, или длинной нити.
Судя по всему, вирусы играют ключевую роль в функционировании планетарных экосистем (комплексов живых организмов, взамодействующих с геохимическими и климатическими процессами планеты.) Взять, к примеру, Мировой океан. Сотни миллионов вирусов присутствуют в каждой капле (миллилитре) и в целом уничтожают сотни миллионов тонн микроорганизмов каждую минуту. (Микроорганизмы включают бактерий, архей, фитопланктон и зоопланктон и весят обычно намного меньше одного грамма; одна капля морской воды может содержать несколько тысяч и даже миллионов таких организмов.) Когда вирус уничтожает микроба, происходит разрушение клеток микроба (лизис), в результате чего высвобождаются новые вирусы и остатки клеток, которые, в свою очередь, становятся пищей для новых поколений микроорганизмов. Таким образом, вирусы, принося смерть, способствуют продолжению жизни. Более того, миллиарды лет назад вирусы, возможно, сыграли важную роль в эволюции программируемой клеточной смерти – процесса, за счет которого многоклеточный организм избавляется от старых и больных клеток; без такого процесса сложная жизнь в том виде, в каком мы ее знаем, была бы невозможна.
Еще одна положительная сторона вирусов – их давнее партнерство с бактериями и эукариотами в создании новых видов существ. И вот нагляднейшее тому подтверждение: решающим изменением в эволюции млекопитающих было появление плаценты. Ген, играющий ключевую роль в формировании плаценты, унаследован от эндогенного ретровируса. Как пошутил один из ученых: «Если бы не вирусы, люди до сих пор откладывали бы яйца».
И это еще не все. Вирусы сыграли ключевую роль в развитии способности нашей иммунной системы быстро реагировать на патогены, с которыми она никогда раньше не сталкивалась, – биологи называют развитие этой способности важнейшим эволюционными изменением за последние 500 млн лет. Также полученные у ЭРВ последовательности, как выяснилось, активно участвуют в регуляторных процессах, контролирующих когда, где и какие гены следует «включить» или, наоборот, «выключить». А это опять-таки делает вирусы важной движущей силой эволюции: основное различие между близкими видами состоит не в наборе генов, а в том, как они экспрессируются.