О чем говорят анализы. Секреты медицинских показателей – для пациентов - Евгений Гринь 7 стр.


• синдрома раздавливания или, как еще называют, синдрома размозжения тканей;

• отравления солями ртути, дихлорэтаном и прочими токсическими веществами, которые оказывают некротическое поражение почечной ткани.

При тяжелых явлениях почечной недостаточности может развиться гиперазотемия, при которой уровень остаточного азота может превышать установленную норму в 20 раз.

5.4.2. Мочевина крови

Что касается мочевины, то в норме уровень ее содержания в крови колеблется от 2,5 до 8,3 ммоль/л, причем по аналогии с остаточным азотом повышение мочевины может быть вызвано вследствие потребления большого количества белковой пищи, воспалительных процессов, а также сопровождающихся распадом белка опухолевых заболеваний. Однако отличительной особенностью этих состояний является то, что благодаря работе почек образовавшийся избыток мочевины очень быстро удаляется из организма. И если на протяжении длительного срока в крови обнаруживается мочевина в количестве 7 ммоль/л, то можно смело утверждать о имеющейся почечной недостаточности. Следовательно можно сделать вывод, что рост уровня мочевины в крови является наиболее специфичным для нарушений почечной функции, чем рост уровня остаточного азота крови. Определение количества мочевины входит в обязательный перечень показателей, исследуемых у больного с почечной патологией.

Повышение же уровня мочевины в крови в 20–30 раз свидетельствует о тяжелой почечной недостаточности. В тоже время на ранних стадиях развития почечной недостаточности, когда отсутствует рост количества остаточного азота, количество мочевины увеличивается, что оказывает неоценимую помощь в диагностике.

Для того чтобы как можно раньше выявить почечную недостаточность, на помощь медикам приходит мочевинный коэффициент, который равен процентному отношению мочевины к остаточному азоту и в норме составляет 50–70 %.

Так, при наличии нарушений функции почек данный коэффициент резко увеличивается. Бывают случаи увеличения мочевинного коэффициента еще до нарастания как остаточного азота, так и мочевины. Именно поэтому его увеличение служит предвестником и тревожным ранним признаком почечной декомпенсации.

Снижение же уровня мочевины в крови может быть вызвано нарушением синтеза мочевины в печени при печеночной недостаточности.

5.4.3. Креатинин крови

По содержанию этого показателя азотистого обмена также можно судить о состоянии функций почек. Количество же креатинина в крови не подвержено особым колебаниям и в норме у женщин составляет 0,044-0,088 ммоль/л, а у мужчин – 0,044-0,1 ммоль/л.

Что касается повышения уровня креатинина, то оно происходит одновременно с нарастанием азотемии. Кроме того, креатинин имеет ряд особенностей, среди которых ярко выражена его более высокая устойчивость к незначительным изменениям функций почек в отличие от той же мочевины, а также практически не подвержен влиянию внепочечных факторов, как, например, мочевина или остаточный азот, уровень которых может снижаться при малобелковой диете.

При тяжелых нарушениях почечных функций количество креатинина в крови может увеличиться до 0,8–0,9 ммоль/л. Уменьшение содержания креатинина в крови в клинике и диагностике особого значение не имеет.

Показатель содержания креатинина в крови включен в список главных лабораторных критериев диагностики и определения почечной недостаточности.

5.4.4. Мочевая кислота

Еще одним не менее важным показателем крови является мочевая кислота – продукт обмена пуриновых оснований, которые входят в состав сложных белков нуклеопротеидов. У здорового человека уровень ее содержания у мужчин составляет 0,24 ммоль/л, а у женщин – 0,16-0,4 ммоль/л.

Состояние, при котором происходит повышение содержания мочевой кислоты, носит название гиперурикемии.

Гиперурикемия является частым спутником таких заболеваний и состояний, как:

• лейкозы.

• B12-дефицитная анемия.

• острые инфекции (пневмония, туберкулез, рожистое воспаление, брюшной тиф.

• заболевания печени и желчевыводящих путей.

• тяжелая форма сахарного диабета.

• хроническая экзема.

• псориаз.

• крапивница.

• отравление окисью углерода или метиловым спиртом.

В отдельных случаях, например, при подагре изменение содержания мочевой кислоты происходит волнообразно, т. е. за периодом нормального содержания мочевой кислоты следует период резкого ее повышения относительно нормы, порой в 3–4 раза.

Отличительной особенностью мочевой кислоты является то, что величина ее содержания в крови не является показателем функции почек и для диагностики почечной недостаточности не используется.

5.4.5. Индикан крови

В норме содержание индикана в крови колеблется от 0,19 до 3,1 мкмоль/л и при развитии почечной недостаточности происходит его увеличение.

Однако у показателя индикана довольно низкая диагностическая ценность. А все дело в том, что уровень его содержания незначительно, но все же увеличивается при гнилостных процессах, происходящих в кишечнике. Поэтому увеличение содержания индикана до 4,7 мкмоль/л условно считается следствием кишечных заболеваний. При более высоких его уровнях уже говорят о развитии почечной патологии.

5.5. Ферменты сыворотки крови

Ферменты представляют собой специфические вещества, имеющие белковую природу, которые вырабатываются клетками и тканями живых организмов.

В норме в сыворотке крови и плазме ферменты принято разделять на три группы:

• Секреторные, к которым относятся ферменты свертывания крови, а также сывороточная холинэстераза. Они, как известно, синтезируются в печени и выделяются в плазму крови, где и выполняют свою физиологическую функцию.

• Индикаторные, или клеточные ферменты, выполняющие отдельные внутриклеточные функции, попадают в кровь из тканей, причем их особенностью считается то, что они являются индикатором степени и глубины повреждения тканей.

• Экскреторные ферменты образуются в печени и обычно выделяются с желчью, и при различных патологических процессах выделение этих ферментов с желчью нарушается, а их активность в плазме крови возрастает.

Однако особый интерес для врача представляет исследование активности именно индикаторных ферментов в сыворотке крови.

Так, при поражении печени, например, вирусным гепатитом А (болезнь Боткина) в сыворотке крови происходит значительное увеличение активности АлАТ и АсАТ и некоторых других ферментов. Большинство же ферментов, которые находятся в печени, присутствует и в других органах и тканях. Но существуют ферменты, которые свойственны преимущественно для ткани печени. В ряду таковых находится γ-глутамилтранспептидаза, или γ-глутамилтрансфераза, который является очень чувствительным индикатором при заболеваниях печени. Так, например, повышение его активности отмечается:

• При остром инфекционном или токсическом гепатите.

• При циррозе печени.

• При внутрипеченочной или внепеченочной закупорке желчных путей.

• При первичном или метастатическом опухолевом поражении печени.

• При алкогольном поражении печени.

Рис. 23. Здоровая печень и печень с циррозом


Конечно иногда повышение активности γ-глутамилтрансферазы может наблюдаться при застойной сердечной недостаточности, реже – в период после инфаркта миокарда, при панкреатитах и опухолях поджелудочной железы.

Еще одними органоспецифическими тестами являются гистидаза, аргиназа, сорбитолдегидрогеназа и орнитинкарбомоилтрансфераза. Изменение активности этих ферментов также говорит о поражении тканей печени.

В последнее время в лабораторной диагностике широко стало проводиться исследование активности изоферментов в сыворотке крови. Одним из таких изоферментов является изофермент ЛДГ. Так, для сердечной мышцы характерна большая активность изоферментов ЛДГ1 и ЛДГ2, а для печени – ЛДГ4 и ЛДГ5. При развитии острого инфаркта миокарда в сыворотке крови резко увеличивается активность изоферментов ЛДГ1 и ЛДГ2, в то время как, например, при паренхиматозном гепатите происходит значительное увеличение активности изоферментов ЛДГ4 и ЛДГ5, а активность ЛДГ1 и ЛДГ2, наоборот, уменьшается.

Кроме изоферментов ЛДГ, также подвергаются исследованию активность в сыворотке крови изоферментов креатинкиназы. Известны три ее изофермента:

• BB, содержащийся в мозговой ткани.

• MM, который содержится в скелетной мускулатуре.

• MB, гибридный изофермент, в основном располагающийся в сердце.

Так, при остром инфаркте миокарда повышается активность именно MB-формы креатинкиназы, а так как эта форма характерна только для ткани сердца, то по ее активности в сыворотке крови можно судить о возможном поражении сердечной мышцы.

5.6. Неорганические вещества

Что касается неорганических веществ, содержащихся в сыворотке и в плазме крови, среди которых особого внимания заслуживают калий, натрий, кальций, фосфор, магний, железо, хлор, а также многие другие, то они отвечают за такие физико-химические свойства крови, как:

• Осмотическое давление.

• Электропроводность.

• Поверхностное натяжение.

• Кислотно-основное состояние.

Так, основной осмотически активный ион внеклеточного пространства натрий в плазме крови содержится в концентрации 132–150 ммоль/л, что практически в 8 раз выше, чем в тех же эритроцитах.

Состояние, которое сопровождается повышением концентрации ионов натрия за верхний предел нормы, называется гипернатриемией и может наблюдаться при:

• Паренхимотозном нефрите.

• При врожденной сердечной недостаточности.

• При первичном и вторичном гиперальдостеронизме (заболевание коры надпочечников).

Концентрация ионов еще одного неорганического вещества – калия – в плазме крови находится на уровне 3,8–5,4 ммоль/л, а в эритроцитах – в 20 раз выше. Причем содержание калия в клетках на порядок выше, чем во внеклеточном пространстве. Поэтому, если при определенном заболевании усиливается клеточный распад или гемолиз, происходит немедленное увеличения количества калия в сыворотке крови.

Так, гиперкалиемия характерна для острой почечной недостаточности и недостаточности функции коркового вещества надпочечников.

При развитии гипокалиемии могут наблюдаться тяжелые нарушения в работе сердца.

Что касается кальция, то в плазме крови он содержится в концентрации 2,25-2,8 ммоль/л, а в эритроцитах, наоборот, можно обнаружить лишь его следы.

Явление гиперкальциемии может наблюдаться при развитии опухолей в костях, а также при гиперплазии и аденоме паращитовидных желез.

Гипокальциемия характерна для состояния нарушения функции паращитовидных желез, а также встречается при рахите, желтухе, а также при нефрозах и гломерулонефритах.

Всего неорганических веществ в плазме содержится около 1 %. Что касается их содержания в тканях организма, то там они располагаются в основном в составе комплексов с углеводами, органическими кислотами, белками.

6. Газы крови

Как известно, одной из функций крови является перенос газов. Но тут может появиться резонный вопрос «А что это за газы такие?».

К этим газам относятся кислород и углекислый газ или, как его еще называют, двуокись углерода.

Именно о них и о их функциях в организме пойдет речь.

6.1. Кислород

Одной из главных, а может быть и самой главной из функций крови является перенос поглощенного легкими кислорода ко всем органам и тканям и обратная доставка полученного от них углекислого газа в легкие. Перенос этих газов кровью возможен благодаря наличию в ее составе эритроцитов гемоглобина.

В свою очередь гемоглобину эту способность обеспечивает наличие в молекуле гема двухвалентного железа.

Гемоглобин, присоединяя к себе кислород, превращается в оксигемоглобин. И эта реакция носит название оксигенация. Обратный же процесс соответственно называется дезоксигенацией, а несвязанный с кислородом гемоглобин именуется дезоксигемоглобином.

Известно, что в организме человека 1 г гемоглобина может присоединить к себе 1,24 мл кислорода, т. е., исходя из этого, можно рассчитать кислородную емкость крови – максимально возможное количество кислорода, которое способен связать гемоглобин. Так, если гемоглобина 150 г/л, то в 1 литре крови будет содержаться 201 мл кислорода, в 100 мл соответственно – 20,1 мл, или 20,1 объемных процента.

Процентное же отношение количества кислорода (O2), которое связано с гемоглобином, к кислородной емкости крови, носит название насыщение (SO2 или HBO2), т. е. фактически это отношение оксигемоглобина к общему содержанию гемоглобина крови.

В норме этот показатель составляет 96–98 %. Конечно, бывают случаи снижение насыщения на 2–4 %, но это вызвано неравномерной вентиляцией легких и небольшой примесью венозной крови, что часто встречается у вполне здоровых людей.

Кроме того, насыщение кислородом гемоглобина зависит от напряжения кислорода в крови.

У здорового человека напряжение кислорода в артериальной крови (PaO2) равно 95-100 мм рт. ст. и постепенно снижается. Так, в молодом возрасте PaO2 составляет 95-100 мм рт. ст., в 40 лет – 80 мм рт. ст., а уже в 70 лет – 70 мм рт. ст. Связывают это явление с тем, что с возрастом снижается равномерность функционирования некоторых участков легких.

Таким образом, оксигенацию прекрасно характеризуют все два показателя: напряжение кислорода и насыщение крови кислородом и явление снижения этих показателей в артериальной крови называют артериальной гипоксемией.

6.2. Двуокись углерода (углекислый газ)

Углекислый газ (CO2), или как его еще называют, двуокись углерода, является конечным продуктом обменно-окислительных процессов в клетках и тканях организма человека. Кровь транспортирует двуокись углерода к легким, где происходит выделение его во внешнюю среду в количестве 99,5 %. Остальная часть углекислого газа удаляется почками.

В крови углекислый газ находится в следующих состояниях:

• в плазме крови в растворенном виде – 5 %.

• связанным с аминогруппами гемоглобина – 15 %.

• в форме угольной кислоты (H2CO3) – в незначительном количестве.

• в форме бикарбонатионов (HCO3) – более 80 %.

В норме в артериальной крови напряжение двуокиси углерода (PaCO2) колеблется в пределах от 35 до 45 мм рт. ст. Причем если этот показатель увеличивается, то говорят об артериальной гиперкапнии, если же наоборот снижается – об артериальной гипокапнии.

Наблюдается же нарушение газового состава крови при некоторых заболеваниях легких и, исследуя показатели газового состава артериальной крови, можно судить о состоянии легких в целом.

7. Кислотно-основное состояние крови

Огромное значение для организма имеет такая гомеостатическая постоянная, как активная реакция крови, которая обеспечивает выполнение окислительно-восстановительных процессов, деятельность ферментов, а также направление и интенсивность всевозможных видов обмена.

Неразрывно с понятием кислотно-основного состояния связаны кислотность и щелочность раствора. Причем будет ли раствор щелочным или кислотным, напрямую зависит от содержащихся в нем свободных ионов водорода.

Что касается крови, то активная реакция характеризуется отрицательным десятичным логарифмом концентрации водородных ионов, или водородным показателем (pH).

Так, разработана шкала pH от 0 до 14, в которой в зависимости от содержания ионов водорода среду делят на кислую при pH от 0 до 7, щелочную – от 7 до 14, а также нейтральную, если pH равняется 7.

Что же обеспечивает постоянство кислотно-основного состояния?!

Этому способствует целый ряд физико-химических (буферные системы) и физиологических (легкие, печень, почки и др.) механизмов компенсации.

Так, буферные системы – это растворы, которые обладают способностью достаточно стойко поддерживать постоянную концентрацию ионов водорода даже при условии разбавления, а также добавления кислот и щелочей.

Различают следующие буферные системы:

• Бикарбонатная буферная система (смесь H2CO3 и HCO3+), которая является самой мощной из систем и составляет 53 % буферной емкости крови.

• Гемоглобин-оксигемоглобин буферная система – 35 %.

• Белковая буферная система – 7 %.

• Фосфатная – 5 %.

Теперь пришло время узнать, какое влияние на поддержание кислотно-основного состояния оказывают внутренние органы человека.

Например, большой вклад в этот жизненно необходимый процесс вносят легкие. А все из-за того, что в сутки легкими выделяется из организма примерно 15 000 моль углекислого газа, что соответствует удалению из крови приблизительно такого же количества ионов водорода. Кроме того, одним из самых важных показателей кислотно-основного состояния и его дыхательной составляющей является напряжение углекислого газа в крови (РаСО2).

Респираторные сдвиги кислотно-основного состояния принимают активное участие в регуляции дыхания. Причем именно легочный механизм компенсации является очень чувствительным и быстрым. Так, посредством легких коррекция изменений pH происходит в течение 1–3 мин.

Следующим органом, участвующим в поддержании кислотно-основного равновесия, являются почки. С их помощью происходит связывание или выведение ионов водорода, а также возвращение в кровь ионов натрия и бикарбоната. Важной деталью является то, что почечные механизмы регуляции кислотно-основного равновесия имеют тесную связь с водно-солевым обменом. По сравнению же с легочной компенсацией развитие метаболической почечной компенсации происходит намного медленнее, т. е. за 6-12 часов.

Назад Дальше