Предположим, однако, что к рычагу в тоже самое время, во с другой стороны точки опоры прикладывают другую направленную вниз силу. Если вторая сила равна первой и приложена на таком же расстоянии от точки опоры, то полученные два крутящих момента равны по величине, но не по направлению. Крутящий момент на одной стороне точки опоры имеет тенденцию вызывать вращение по часовой стрелке, а тот, что с другой стороны, имеет тенденцию вызывать вращение против часовой стрелки. Если обозначить один крутящий момент как τ, то другой должен быть равен -τ. Эти два крутящих момента складываются, сумма их равна нулю, и рычаг не двигается. Он остается в положении равновесия.
(С другой стороны, если сила приложена вниз на одной стороне точки опоры и вверх на другой, то оба производят движение в том же самом направлении: оба по часовой стрелке или оба против часовой стрелки. Крутящие моменты в этом случае будут одного и того же знака, и сумма их будет составлять 2τ или –2τ. Такой удвоенный крутящий момент называется «парой», и, естественно, пара моментов может более легко переместить рычаг относительно точки опоры. Такую пару мы используем, когда заводим будильник или открываем штопором бутылку.)
Крутящие моменты, используемые при применении рычага, часто образуются под действием грузов, опирающихся на концы балансировочного рычага; они также могут находиться на чашках, установленных на этих концах. Можно сказать, что два равных груза приведут рычаг в положение равновесия, если они помещены на противоположные стороны точки опоры и на равных расстояниях от нее.
Это фактически и является принципом «балансирных весов». Такие весы имеют две чашки равного веса, установленные на концах горизонтального прутка («коромысла», поэтому такие весы также называют «весами с коромыслом». — Пер.), который вращается относительно центральной точки опоры. Если мы поместим объект неизвестного веса в одну чашку, а в другую чашку — набор известных весов (тарированные гирьки) и приведем весы в положение равновесия, то неизвестный вес будет равен сумме известных весов в другой чашке. По этому же принципу мы измеряем массу, а не только вес.
Рычаг, подвергнутый воздействию равных и противоположных по знаку крутящих моментов, считается находящимся «в положении равновесия» («equilibrum» — от латинских слов, означающих «равные веса»). Это выражение применяют к любой системе, находящейся под воздействием сил, которые производят взаимоисключающие эффекты и оставляют общее состояние системы неизменным.
Для того чтобы рычаг находился в положении равновесия, он должен быть подвергнут воздействию равных и противоположных по знаку крутящих моментов, и это справедливо даже в том случае, если приложенные силы неравны. Рассмотрим направленную вниз силу f), приложенную к точке на одной стороне рычага на некотором расстоянии (к) от точки опоры. Крутящий момент, создаваемый этой силой, равен fr. Затем рассмотрим другую направленную вниз силу, величиной вдвое больше, чем первая (2f), приложенную к точке на другой стороне от точки опоры, но на расстоянии, равном только половине первого (–r/2). (Мы ставим отрицательный знак перед величиной расстояния потому, что это расстояние находится на противоположном от точки опоры направлении относительно первого.) Этот второй крутящий момент равен (2f)∙(–r/2) или (–fr). То есть мы имеем два крутящих момента, которые равны и противоположны, и рычаг остается в положении равновесия.
Легко видеть, что если силы произведены неравными весами, опирающимися на концы рычага, то центр тяжести системы должен сместиться к концу с большим весом. Чтобы поддерживать равновесие, точка опоры должна находиться непосредственно под новым положением центра тяжести. Как только это будет сделано, мы сразу сможем обнаружить, что его положение центра тяжести стало таким, что произведение одного веса на его расстояние от точки опоры стало равно произведению другого веса на его расстояние от точки опоры.
Таким образом, если два ребенка примерно равного веса находятся на качелях, правильным для них будет сесть на концы качелей. Если один ребенок заметно более тяжелый, чем другой, он должен сидеть ближе к точке опоры. Эти двое детей должны расположиться таким образом, чтобы их собственный центр тяжести плюс таковой качелей находился непосредственно над точкой опоры. (В устройстве некоторых качелей предусмотрена возможность перемещения, то есть имеется регулировка длины коромысла для «подстройки» его положения по отношению к точке опоры.)
Тот факт, что для равновесия системы требуется равенство крутящих моментов, а не сил, определил широкое использование рычага. Предположим, что мы поместили вес в 250 килограммов (эквивалент силы приблизительно в 2450 ньютонов) на расстояние, равное 1 метру от точки опоры. Затем предположим, что на расстоянии 10 метров от точки опоры, с другой стороны рычага, человек прикладывает направленную вниз силу, равную 245 ньютонам (эквивалент веса в 25 килограммов). Крутящий момент, который создает эта сила (25∙10), равен и противоположен крутящему моменту, созданному весом с другой стороны рычага (250∙1). Рычаг находится в положении равновесия, и большой вес поддерживается малой силой. Если человек применит несколько большую силу (которая является все еще значительно меньшей, чем та, что создана весом с другой стороны), рычаг перевесит на его сторону.
Человек не столь чувствителен к крутящему моменту, как к силе (точнее, к мускульному усилию). Он знает, что не может создать достаточную силу, чтобы непосредственно поднять вес в 250 килограммов. Используя рычаг, однако, он может делать работу с силой, равной одной десятой той, которая потребовалась бы для прямого подъема. Регулируя длину рычага, он смог бы обойтись силой в одну сотую, в одну тысячную или в любую другую часть силы, действительно требуемой для прямого подъема. Полезность рычага как способа умножения сил человека для подъема грузов заложена в самом слове «рычаг» (lever), которое происходит от латинского слова, означающего «поднимать».
Без сомнения, еще первобытный человек наткнулся на этот «принцип рычага», но только во времена греческого математика Архимеда (ок. 287 — 212 до н.э.) ситуация впервые была проанализирована с научной точки зрения. Высокая оценка принципов использовании рычага отразилась в его знаменитой, хотя и немного напыщенной фразе: «Дайте мне точку опоры, и я переверну весь мир».
Любое устройство, которое передает силу от точки приложения к другой точке, где она используется, называется «механизмом» (machine — от латинского слова, означающего «изобретение» или «устройство»). Рычаг делает то, что сила, приложенная на одной стороне к точке опоры, может поднять вес с другой стороны; он делает это столь несложным способом, что далее упростить его уже невозможно. Поэтому рычаг является примером простого механизма. Другие примеры простых механизмов — наклонная плоскость, колесо и ось. Некоторые добавляют к этому списку еще три других простых механизма: шкив, клин и винт. Однако шкив может рассматриваться как своего рода рычаг, клин состоит из двух наклонных плоскостей, связанных основаниями, а винт представляет собой наклонную плоскость, «обвитую» вокруг оси.
Фактически все более сложные механизмы, изобретенные и используемые человечеством вплоть до недавнего времени, являются просто комбинациями двух или более простых механизмов. Эти механизмы зависят от движений и сил, вызванных действием в прямом контакте двигающихся тел. В результате та ветвь физики, которая имеет дело с такими движениями и силами, называется «механикой».
Та ветвь механики, которая имеет дело непосредственно с движением, называется «динамикой» (dynamics), в то время как та ветвь, что имеет дело с движениями, связанными с положением равновесия, называется «статикой» (statics — от греческого слова, означающего «остановить»). Архимед был первым великим ученым в области статики благодаря работам по изучению рычага. Галилео Галилей был первым великим ученым в области динамики.
Единственная сила, которая, кажется, не является результатом прямого воздействия одного тела на другое, — сила тяжести. Тяготение, по-видимому, воздействует силой на расстоянии и вызывает движение без вступления в прямой контакт с телами. Такое «действие на расстоянии» интересовало как Ньютона, так и многих физиков после него. Были разработаны различные варианты оправдания ее, и сила тяжести заняла свое почетное место в ряду механических сил. Таким образом, изучение движений небесных тел, которые происходят и управляются силами тяготения, называется «астрономической механикой».
Механизм не только передает силу, часто он может использоваться, чтобы умножить эту силу, как мы видим на примере описанного выше рычага. И все же к этому умножению силы нужно относиться с подозрением. Как один ньютон силы может делать работу десяти ньютонов только посредством передачи ее через твердый брусок? Как я указал в начале этой главы, рассчитывать на такое великодушие со стороны Вселенной слишком трудно. Что-то еще должно быть потеряно, чтобы восполнить его.
Если мы рассмотрим рычаг, поднимающий вес в 250 килограммов при помощи эквивалента силы, равного только 25 килограммам веса, то, как видно из диаграммы, мы имеем два подобных треугольника. Стороны и высота одного пропорциональны соответствующим сторонам и высоте другого, поскольку расстояние от точки приложения веса до точки опоры пропорционально расстоянию от точки приложения силы до точки опоры.
Другими словами, если мы прикладываем силу в точке, в десять раз так же отдаленной от точки опоры, как вес, а затем поднимаем вес на данное расстояние, мы должны опустить рычаг вниз на расстояние в десять раз большее. Вот он — ответ! При подъеме веса посредством рычага мы можем регулировать расстояния от точки опоры таким образом, чтобы использовать только часть силы, которая потребовалась бы, если бы мы поднимали груз без рычага, но тогда мы должны применить эту часть силы на соответственно большем расстоянии. Произведение силы на расстояние остается тем же самым с обоих концов рычага.
Это оказывается истинным для любого механизма, который, как нам кажется, умножает силу. Меньшая сила исполняет задачу, которая без механизма потребовала бы большей силы, но всегда за счет необходимости приложения этой силы на соответственно большем расстоянии. Произведение силы на перемещение, на котором действует сила, называется «работой» и обычно обозначается w. Таким образом:
В некотором смысле работа — достаточно неудачный термин, чтобы использовать его в данной связи. Любой согласится, что подъем веса на какое-то расстояние — работа, но в повседневном использовании смысл данного термина не ограничен одним этим значением. В повседневной речи работа — термин, который применяется к любой форме производства. Если я спокойно сижу в своем кресле и в течение получаса думаю о том, что же дальше написать в этой книге, то такое действие может показаться мне тяжелой работой, но данный процесс не включает в себя какого-либо действия на каком-либо расстоянии, а значит, с точки зрения физика, не является работой. Опять же стоять на одном месте и держать в руке тяжелый чемодан — кажется тяжелой работой, но так как чемодан не двигается, то при этом не совершается никакой работы. Если идете и несете чемодан, то опять же при этом не производится никакой работы, поскольку хотя чемодан и перемещается (горизонтально), но перемещается не в направлении действия силы (вертикально), которая предохраняет его от падения.
Тем не менее термин «работа», означающий силу, умноженную на расстояние, на которое тело перемещается под ее действием, установлен повсеместно и не подлежит переделке.
Единицы измерения работы — это единицы измерения силы, умноженные на единицы измерения расстояния. В системе МКС единицей измерения работы является произведение ньютона на метр; это произведение было названо «джоулем» в честь английского физика, о котором я буду иметь случай упомянуть позже. В системе СГС единица работы получается равной дине, умноженной на сантиметр; эта единица называется «эрг» (от греческого слова, означающего «работа»). Так как ньютон равен 100 000 дин, а метр равен 100 сантиметрам, то ньютон-метр равен 100 000 раз по 100 дин-сантиметров. Другими словами, один джоуль равен 10 000 000 эргов.
Так как сила — векторная величина, может показаться, что работа, которая является произведением силы на расстояние, также должна быть вектором; это означало бы, что можно говорить о данном количестве работы, сделанной при движении направо, и том же количестве работы, сделанной при движении налево, как о равных и противоположных по знаку. Однако это не так. Для того чтобы понять — почему, рассмотрим единицы измерения работы еще раз.
Ньютон определяется как килограммометр в секунду за секунду, или кг-м/с2. Если джоуль равен ньютон-метру, то тогда он равен килограмм-метр-метру в секунду за секунду, или кг-м2/с2. Это последнее выражение может быть записано как кг-(м/с)2. Но м/с (метры в секунду) — единица скорости, а это означает, что единица работы равна единице массы, умноженной на квадрат единицы скорости, или w = mv2.
Истинно, что скорость является векторной величиной, поэтому можно было бы говорить о –v и +v, но единица работы включает в себя квадрат скорости. Как мы знаем из элементарной алгебры, квадрат положительного числа (+v) x (+v) и квадрат отрицательного числа (– v)∙(−v) положительны (+v2).
Следовательно, квадрат скорости не показывает никаких различий в знаках, и единица, которая включает в себя квадрат скорости, — не векторная, а скалярная величина (если, конечно, она не содержит других (иных, чем скорость) векторных единиц измерения).
Таким образом, мы пришли к выводу, что работа — скалярная величина.
Возвращаясь к рычагу, мы видим, что работа, потраченная на подъем валуна рычагом, та же самая, что потребовалась бы на подъем валуна без рычага. В данном случае отличается лишь распределение работы между силой и расстоянием. То же самое истинно и в том случае, когда в качестве механизма мы используем наклонную плоскость.
Допустим, что нам необходимо поднять 50-килограммовую бочку на высоту два метра на задний борт грузовика. Так как килограмм веса прикладывает направленную вниз силу, равную 9,8 ньютона, то, чтобы поднять бочку, потребуется сила общей величиной 490 ньютонов. Приложив силу, равную 490 ньютонов, на расстояние в два метра в направлении силы, мы выполним 980 джоулей работы.
Предположим вместо этого, что мы кладем доску от основания (земли) на грузовик таким образом, чтобы доска составляла угол в 30° с землей. При таких условиях длина доски от основания до грузовика только в два раза больше вертикального расстояния от земли до грузовика, или четыре метра. Сила, которая потребуется, чтобы катить бочку по доске, равна 245 ньютонам, то есть только половине силы, требуемой для прямого подъема. Эта половина силы прикладывается на расстоянии в два раза большем, но работа продолжает равняться 980 джоулям.
Чем меньше угол наклона наклонной плоскости, тем меньше сила, которая потребуется, чтобы переместить бочку, и тем длиннее расстояние, на которое она должна быть перемещена. Наклонная плоскость уменьшает силу так же, как она уменьшала скорость в опыте с силой тяжести, который выполнил Галилео. Ни наклонная плоскость, ни рычаг, ни любой другой механизм не уменьшает работу. Если мы рассматриваем работу, то мы никогда не получаем что-то из ничего.
Но если мы не получаем никаких преимуществ при выполнении работы, то зачем беспокоиться? Ответ состоит в том, что, даже если мы не получаем ничего непосредственно, мы можем извлечь пользу, изменяя распределение между силой и расстоянием. Если рассматриваемый случай — подъем груза, когда мы должны поднять вверх на два метра 250 килограммов, то без дополнительной помощи мы не сможем его поднять и вынуждены будем отказаться. Мы не сможем поднять его на метр, сантиметр или вообще на какую-либо высоту; мы не сможем сдвинуть его. Однако переместить груз, эквивалентный 50 килограммам, на расстояние в десять метров — вполне выполнимая задача, особенно если нам некуда спешить; таким образом, мы можем сделать ту же самую работу (50∙10), которая была признана невозможной при предыдущих условиях (250∙2). Поднять эквивалент пяти килограммов по наклонной плоскости длиной 100 метров — может быть, утомительно, но вполне возможно.
Опять же если бы нас попросили подтянуться вверх по веревке, спущенной с крыши пятиэтажного здания, то мы могли бы сразу решить, что это — вне пределов наших способностей, разве что мы находимся в превосходной физической форме. Однако совершенно обычный человек может поднять свой вес на крышу пятиэтажного дома, если он идет по скату, который является наклонной плоскостью, позволяющему ему использовать меньшее количество силы, чтобы поднять свое тело за счет перемещения его на более длинное расстояние.
Иногда удобно сделать противоположное: израсходовать дополнительную силу, чтобы получить выигрыш в расстоянии. Именно таким образом мы прикладываем много силы к педали велосипеда. Это усилие передается к точке на заднем колесе, около его центра. Далее спицы колеса действуют как рычаги (с точкой опоры на оси колеса), так что на обод колеса передается небольшая сила, благодаря которой велосипед перемещается на большое расстояние.
Велосипед поэтому — механизм, который позволяет телу преобразовывать силу в расстояние (без изменения полного количества выполненной работы) более эффективно, чем это могло быть сделано без велосипеда. По этой причине человек на велосипеде может легко обогнать бегущего человека, хотя оба используют мускулы своих ног с равным усилием.
Определение работы как произведения силы на расстояние, на которое она действует, не говорит ничего относительно времени, которое требуется для того, чтобы выполнить данное действие. Люди обычно предпочитают выполнять какое-то количество работы за более короткое время, чем за длительное, и поэтому заинтересованы знать норму, по которой выполняется данная работа. Такая норма называется «мощностью». Единицы измерения мощности — Дж/с в системе МКС и эрг/с в системе СГС.
Очень распространенная единица мощности, которая не входит ни в какую систему, была разработана шотландским инженером Джеймсом Ваттом (1736–1819) в конце XVIII века, он улучшил паровой двигатель и сделал его пригодным для практического применения; он стремился узнать, насколько норма работы в водяной помпе его двигателя при откачке воды из угольных шахт отличается от нормы работы лошадей, которых до этого использовали в качестве силового привода на подобной работе. Чтобы определить «лошадиную силу», Ватт проверял, сколько веса, на какое расстояние и за какое время могут поднять лошади. Он пришел к заключению, что сильная лошадь могла поднять 150 фунтов веса на высоту 220 футов за одну минуту, так что одна лошадиная сила была равна 150∙200/1, или 33 000 фунтов-футов в минуту.
Эта неудобная единица равна 745,2 Дж/с, или 7 452 000 000 эрг/с. Величине джоуль/секунда было в честь Джеймса Ватта присвоено название «ватт», так что мы можем также говорить, что одна лошадиная сила равна 745,2 ватта. Ватт, однако, наиболее часто используется при электрических измерениях. В механической инженерии (по крайней мере, в Великобритании и Соединенных Штатах) пока еще главенствует лошадиная сила. Например, мощность наших автомобильных двигателей обычно дается в лошадиных силах.
Приятно видеть, что работа, которую мы прикладываем к одному концу рычага, равна работе, выходящей из другого его конца, и мы могли бы справедливо предположить существование «закона сохранения работы».
К сожалению, такой возможный закон сохранения почти сразу натыкается на препятствие. В конце концов, где работа пребывала до того, как быть приложенной к рычагу? Если один конец рычага управлялся человеком, который использовал рычаг, чтобы поднять груз, работа произошла от перемещения, вызванного движением человеческой руки.
А откуда взялась работа перемещающей рычаг руки? Сидящий спокойно человек может внезапно переместить свою руку и сделать работу там, где никакой работы до этого, казалось, не существовало. Это входит в противоречие с понятием сохранения, в соответствии с которым сохраняемое явление не может быть ни создано, ни разрушено.
Поэтому, если вы стремитесь к тому, чтобы основать закон сохранения работы, вы должны предположить, что работа, или какой-то эквивалент работы, могла бы быть сохранена в человеческом теле (и в других возможных объектах) и что по мере необходимости могут происходить обращения к этому «складу» и вызванная работа была бы сконвертирована в видимую, ощутимую форму.
На первый взгляд такой «склад» работы кажется связанным с живыми формами, так как живые существа кажутся заполненными этой способностью — делать работу, в то время как неодушевленные предметы главным образом лежат в состоянии покоя и не работают. Немецкий философ и ученый Готфрид Вильгельм Лейбниц (1646 — 1716), который был первым, кто получил ясное понятие работы в физическом смысле, хотел назвать этот «склад работы» — vis viva (от латинского выражения, означающего «живая сила»).
Однако совершенно ошибочно предположить, что работа может быть «заложена» только в живых существах; так, ветер может нести суда, а вода поворачивает колесо жернова, и в обоих случаях сила прикладывается на расстоянии. Отсюда возникло предположение, что «склад» работы может быть также и в неодушевленных предметах. В 1807 году английский врач Томас Юнг (1773–1829) предложил для этого «склада» работы термин «энергия». Этот термин происходит от греческих слов, означающих «вместилище работы», и является вполне нейтральным термином, который может применяться к любому объекту независимо от того, живой он или неодушевленный.