Термин «энергия» постепенно приобрел популярность и теперь применяется к любому явлению, способному к преобразованию в работу. Человечеству известно огромное множество таких явлений, а следовательно, множество форм энергии.
Первой формой энергии является непосредственно само движение. Работа включает в себя движение (так как объект должен быть перемещен на какое-то расстояние), так что неудивительно, что движение способно делать работу. Двигающийся воздух, то есть ветер, приводит в движение судно, а не «стоячий» воздух; поток воды поворачивает жернов, а не неподвижная вода. Значит, не воздух или вода содержат энергию, а движение воздуха или воды. Фактически все, что перемещается, содержит энергию, поскольку если перемещающийся объект независимо от того, что он собой представляет, столкнется с другим объектом, то он сможет передать свое количество движения этому второму объекту и привести его массу в движение — таким образом выполняется работа, поскольку масса будет перемещаться на некое расстояние под воздействием силы.
Энергия, связанная с движением, называется «кинетической энергией», этот термин предложил английский физик лорд Уильям Кельвин (1824– 1907) в 1856 году. Слово «кинетический» происходит от греческого слова, означающего «движение».
Так сколько же точно содержится кинетической энергии в теле, перемещающемся с некоторой скоростью, равной v? Чтобы определить это, давайте предположим, что в конце концов мы собираемся обнаружить существование закона сохранения для работы во всех ее формах. В этом случае было бы разумным утверждать, что, если мы выясним, сколько работы требуется, чтобы переместить тело с некоторой скоростью, равной v, тогда это автоматически будет означать количество работы, которую можно выполнить по отношению к некоторому другому объекту благодаря его движению с этой скоростью. Короче говоря, это будет его кинетическая энергия.
Чтобы заставить тело двигаться, во-первых, требуется приложить силу, а эта сила, в соответствии со вторым законом Ньютона, равна массе перемещающегося тела, умноженной на его ускорение: f = та. Тело будет перемещаться на некоторое расстояние, равное d, прежде чем ускорение разгонит его до скорости v, с которой мы и начали разговор. Работа, приложенная к телу, которая требуется, чтобы заставить его двигаться с этой скоростью, равна произведению силы на расстояние.
Если мы выразим силу как ma, то мы получим:
Значительно раньше, в этой книге, когда мы обсуждали эксперименты Галилео с падающими телами, мы показали, что v = at, то есть скорость, другими словами, является произведением ускорения на время. Это выражение можно легко преобразовать в t = v/a. Также при обсуждении экспериментов Галилео мы заметили, что там, где имеется однородное ускорение,
где d — расстояние, покрытое перемещающимся телом. Если вместо t в указанном выше отношении мы подставим v/a, то получим:
Давайте теперь подставим это значение для d в уравнение 7.2, которое тогда примет форму:
Это — работа, которую следует приложить к телу массой m, чтобы заставить его двигаться со скоростью v. И поэтому это — кинетическая энергия, которую содержит тело такой массы, двигающееся с такой скоростью. Если мы обозначим кинетическую энергию как ek, то можем написать:
Как я уже сказал ранее, единицы измерения работы включают в себя единицы измерения массы, умноженные на квадрат единиц измерения скорости, и, как видно из уравнения 7.5, кинетическая энергия — тоже. Поэтому кинетическая энергия, как и работа, может быть измерена в джоулях или эргах. И действительно, все формы существования энергии могут быть измерены в этих единицах.
Теперь представим себе, что мы можем обосновать закон сохранения, в котором кинетическая энергия может быть преобразована в работу и наоборот, но в котором сумма кинетической энергии и работы в любой изолированной системе должна остаться постоянной. Но такой закон сохранения не выдержит, как будет показано ниже, никакой критики.
Объект, брошенный в воздух, по мере того как он покидает руку (или катапульту, или некое орудие), приобретает некоторую скорость и поэтому некоторую кинетическую энергию. Поскольку он поднимается вверх, его скорость уменьшается, из-за ускорения, наложенного на него полем тяготения Земли. Значит, и его кинетическая энергия постоянно уменьшается, и в конечном счете, когда объект достигает максимальной высоты и останавливается, его кинетическая энергия полностью исчезает — становится равной нулю. Можно бы было предположить, что кинетическая энергия исчезла из-за того, что в атмосфере была произведена работа и что поэтому кинетическая энергия была переведена в работу. Однако это — неадекватное объяснение события, поскольку то же самое происходило бы и в вакууме. Далее: можно было бы предположить, что кинетическая энергия исчезла полностью и без следа, то есть без появления работы, и что поэтому нет возможности применить какой-либо закон сохранения, включающий в себя работу и энергию. Однако после того как объект достиг максимальной высоты и скорость его движения стала равна нулю, он снова начинает падать, теперь уже вниз, все еще находясь под действием силы тяготения. Он падает все быстрее и быстрее, приобретая все большую кинетическую энергию, и в тот момент, когда он ударяется о землю (сопротивлением воздуха мы пренебрегаем), он обладает всей той кинетической энергией, с которой начал свое движение.
Чтобы не потерять свой шанс обосновать закон сохранения, мне кажется разумным предположить, что энергия, наверное, не исчезала при движении объекта вверх, а просто запасалась в некоторой другой форме, чем кинетическая энергия. Для того чтобы поднять объект на некоторую высоту, преодолевая силу тяжести, требуется выполнить некоторую работу, даже несмотря на то, что, когда объект достиг этой высоты, он остановился. Эта работа должна быть запасена в виде энергии, которую объект содержит в себе и которая основывается на его положении по отношению к полю тяготения земли.
Таким образом, можно сказать, что по мере подъема объекта кинетическая энергия постепенно преобразовывалась в «энергию положения». На максимальной высоте вся кинетическая энергия стала такой «энергией положения». По мере падения объекта назад, вниз «энергия положения» еще раз преобразовалась — обратно в кинетическую энергию. Так как «энергия положения» имеет потенциальность кинетической энергии, то шотландский инженер Уильям Дж.М. Ранкин (1820–1872) в 1853 году предложил назвать такую энергию «потенциальной», и это предложение было принято.
Чтобы поднять тело на некоторое расстояние (d) вверх, требуется приложить силу, равную его весу, на требуемом расстоянии. Сила, приложенная весом, равна mg, где m — масса тела, a g — ускорение свободного падения (см. уравнение 5.1). Если мы обозначим потенциальную энергию как ep, то получим:
Если вся кинетическая энергия тела была преобразована в потенциальную энергию, то значит — первоначальная ek конвертировалась в эквивалентную e, или, объединив уравнения 7.5 и 7.6, получим:
упростив это выражение и приняв предположение, что величина g — постоянна, получаем:
Из этого соотношения можно вычислить (пренебрегая сопротивлением воздуха) высоту, до которой поднимется объект, если нам известна его начальная скорость, то есть та, с которой он двигается вверх. Те же самые соотношения могут быть получены из уравнений, которые явились результатом экспериментов Галилео Галилея с падающими объектами.
Кинетическая энергия и потенциальная энергия — это типы энергии, которые используются механизмами, созданными при помощи рычагов, наклонных плоскостей и колес, а потому эти две формы могут быть объединены одним общим понятием — «механическая энергия». Уже во времена Лейбница было признано, что существует своего рода понятие «сохранения механической энергии» и что (если отбросить такие внешние коэффициенты, как трение и сопротивление воздуха) механическая энергия могла бы быть визуализирована в виде движения вперед и назад между кинетической и потенциальной формами или между ними и работой, но не (и это справедливо для всех трех форм) как нечто, появляющееся из ниоткуда или исчезающее в никуда.
К сожалению, «закон сохранения механической энергии», внешне — такой аккуратный, как это могло бы показаться при некоторых ограниченных обстоятельствах, имеет свои дефекты, и они сразу выбрасывают его из стройного ряда истинных законов сохранения.
Объект, подброшенный в воздух с некоторой кинетической энергией, возвращается на землю, не обладая той кинетической энергией, которая была у него сначала. Небольшое количество ее теряется на преодоление сопротивления воздуха. Опять же если упругий объект падает с некоторой данной высоты, то он должен был бы (в случае, если механическая энергия полностью сохраняется) сильно удариться и вернуться точно на свою первоначальную высоту. Однако этого не происходит. Он всегда возвращается на высоту несколько меньшую первоначальной, и если позволить ему падать снова и снова, то с каждым разом высота его отскока будет уменьшаться, пока не исчезнет вообще. Это зависит не только от сопротивления воздуха, которое, конечно, тоже вносит свою лепту, но также и от несовершенной эластичности непосредственно самого тела. Действительно, если бросить вниз глыбу мягкой глины, ее потенциальная энергия будет преобразована в кинетическую, но в момент, когда глина ударится о землю с «жестким» шлепком, вся кинетическая энергия пропадет без всякого перехода в потенциальную форму. Судя по всему, в таких случаях механическая энергия просто исчезает.
Можно было бы доказывать, что эти потери механической энергии происходят из-за «несовершенства» окружающей среды. Если предположить, что абсолютно гладкая система двигается в абсолютном вакууме или что все объекты абсолютно упругие, то механическая энергия была бы сохранена.
Однако такой спор абсолютно бесполезен, поскольку в истинном законе сохранения дефекты окружающего, реального мира не затрагивают сущность закона. Количество движения, например, сохраняется независимо от трения, сопротивления воздуха, несовершенной эластичности или любого другого отклонения от идеала.
Если мы все еще хотим найти закон сохранения, который вовлекает работу, мы должны иметь в виду, что на каждую потерю механической энергии должно появиться какое-либо увеличение чего-то еще. Такое «кое-что» совсем не трудно найти. Трение — один из наиболее очевидных дефектов окружающей среды — вызывает повышение температуры, то есть нагрев, и, если трение значительно, вызываемое им количество теплоты также значительно. (Температура спичечной головки может быть доведена до точки загорания за одну секунду простым движением по грубой, шершавой поверхности.)
Справедливо и обратное — теплота весьма способна к тому, чтобы ее превратили в механическую энергию. Теплота Солнца поднимает бесчисленные тонны километров водяного пара высоко в воздух, так что вся механическая энергия падения воды (такая, как дождь, водопад или спокойное течение плавной реки) происходит от теплоты, отдаваемой Солнцем.
Более того, уже в XVIII столетии человек преднамеренно преобразовал теплоту в механическую энергию посредством устройства, предназначенного, чтобы изменить мир. Теплота использовалась, чтобы превратить воду в пар в замкнутой камере и использовать этот пар для вращения поршней двигателя и колеса. (Это устройство конечно же называется «паровой двигатель».)
Поэтому кажется ясно, что при разработке истинного закона сохранения мы должны добавить к таким явлениям, как работа, кинетическая и потенциальная энергии, и такое явление, как теплота. Короче говоря, теплоту надо рассматривать как другую форму энергии.
Но если это так, то любое другое явление, которое вызывает повышение температуры, также должно рассматриваться как форма энергии. Электрический ток может нагревать провод, а магнит может вызывать электрический ток, так что и электричество и магнетизм — формы энергии. Свет и звук — также формы энергии и так далее.
Если закон сохранения, который мы выводим, должен охватить работу и все формы энергии (а не только одну механическую энергию), то необходимо показать, что одна форма энергии может быть преобразована в другую форму количественно. Другими словами, в таких энергетических преобразованиях следует рассматривать всю энергию, существующую в процессе; никакая энергия не должна быть полностью потеряна и никакая не создана.
Эта точка зрения была тщательно проверена в 1840-х годах английским пивоваром по имени Джеймс Прескотт Джоуль (1818–1889), чьим хобби было изучение физики. Он измерил теплоту, произведенную электрическим током, трением воды об стекло, образованную кинетической энергией вращения лопастей привода водяного колеса в воде, работой, которая потребовалась для сжатия газа, и так далее. При этом он нашел, что некоторое определенное количество одного вида энергии конвертируется в определенное количество другого вида энергии и что если рассматривать энергию во всем множестве ее проявлений, то никакая энергия не создается или теряется. Именно в его честь единицу измерения работы и энергии в системе МКС назвали «джоулем».
В более ограниченном смысле можно сказать, что Джоуль доказал, что некоторое определенное количество работы всегда производит некоторое количество теплоты. Применяемая обычно в Британии единица работы «фут на фунт» равна работе, которая требуется, чтобы поднять один фунт массы на высоту в один фут, преодолевая силу тяжести. Общепринятая британская единица теплоты называется «британская тепловая единица» (обычно сокращаемая до «Btu») и является тем количеством теплоты, которое требуется, чтобы поднять температуру одного фунта воды на 1° Фаренгейта. Джоуль и его преемники решили, что 778 фут-фунтов эквивалентны 1 Btu, и именно это и называется «механическим эквивалентом теплоты».
Гораздо предпочтительнее выражать этот механический эквивалент теплоты в метрической системе единиц измерения. Фут-фунт равен 1,356 джоуля, то есть 778 фут-фунтов равны 1055 джоулям. Кроме того, наиболее распространенная единица количества теплоты в физике — это «калория», которая равна количеству теплоты, которое требуется, чтобы поднять температуру одного грамма воды на Г Цельсия (т. е. по стоградусной шкале); 1 Btu равен 252 калориям (кал). Поэтому механический эквивалент теплоты Джоуля может быть выражен таким образом: поскольку 1055 джоулей равняются 252 калориям, то 4,18 джоуля = 1 калории.
Как только стало ясным перечисленное выше, дальнейшим естественным ходом было предположить, что закон сохранения механической энергии должен быть преобразован в закон сохранения энергии, то есть включить в себя самый широкий смысл того, что мы понимаем под понятиями «энергия», «работа», «механическая энергия», «теплота» и всеми остальными, которые могли бы быть конвертированы в теплоту. Джоуль видел это, и даже до того, как его эксперименты получили дальнейшее развитие, немецкий физик Юлиус Роберт фон Майер (1814–1878) экспериментально подтвердил истинность таких предположений. Однако впервые закон сохранения энергии был заявлен научному сообществу в форме достаточно ясной и недвусмысленной в 1847 году немецким физиком и биологом Германом фон Гельмгольцем (1821–1894), и поэтому именно он считается первооткрывателем закона.
Закон сохранения энергии, вероятно, является наиболее фундаментальным из всех обобщений, сделанных учеными-физиками, и таким, от которого им меньше всего хотелось бы отказываться. Мы рады сообщить, что пока что этот закон держится, несмотря на все отклонения реальной Вселенной от идеальных моделей, основанных учеными; он справедлив для всех систем — живых и неживых — и действует как для крошечного мира субатомного царства, так и для космического мира галактик. По крайней мере дважды в прошлом (XX) столетии были обнаружены явления, которые, казалось, нарушали закон сохранения энергии, но физики оба раза оказались в состоянии спасти закон, расширяя интерпретацию понятия «энергия». В 1905 году Альберт Эйнштейн доказал, что сама масса является формой энергии, а в 1931 году австрийский физик Вольфганг Паули (1900–1958) выдвинул концепцию нового вида субатомной частицы — «нейтрино», существование которой смогло объяснить очевидные отклонения от закона сохранения энергии.
И все это не было просто вопросом «спасения лица» или внесения исправлений в закон, который начал «разваливаться» и «плыть». Каждое расширение концепции «сохранения энергии» аккуратно вписалось в расширяющуюся структуру науки XX века и помогло объяснить происхождение явлений; оно также помогло предсказать (и абсолютно точно) другие явления, которые нельзя было бы объяснить или предсказать иначе. Ядерная бомба, например, явление, которое можно объяснить только в соответствии с эйнштейновской концепцией о том, что масса является формой энергии.
Закон сохранения энергии служит, чтобы пролить свет на те виды движения, которые мы еще не рассмотрели.
Рассмотренные до настоящего момента виды движений независимо от того, были ли они поступательными или вращательными, происходили (если их не нарушать) непрерывно и в одном направлении. Однако любое движение способно прогрессировать поочередно: сначала в одном, а затем — в другом направлении, изменяя свое направление иногда после долгого интервала времени, иногда после короткого, а иногда — даже очень короткого. Такое движение в противоположных направлениях называется «вибрацией» или «вибрационным движением» (от латинского слова, означающего «колебаться, дрожать»).
Этот тип движения весьма распространен, и мы его постоянно видим и чувствуем, например колебание или дрожание веток и листьев растений под воздействием ветра или быструю дрожь работающих машин, например автомобиля, работающего на холостых оборотах; даже стук наших зубов или тряска рук, когда мы дрожим от холода или возбуждения, являются примерами вибрационных колебаний.
Первой формой вибрации, которую подвергли научным исследованиям, было дрожание тугой струны. Такие струны использовались в музыкальных инструментах, известных даже древнейшим; струны издают музыкальные звуки благодаря тому, что вибрационные движения, которые передаются струнами непосредственно воздуху, порождают акустические колебания (см. главы 11, 12). Первым, кто начал изучать такие колебания, был древнегреческий математик и философ Пифагор Самосский (VI столетие до н.э.). Его интересы лежали полностью в изучении взаимоотношений этих колебаний и музыки, и как результат вибрационные колебания часто стали называть «гармоническими колебаниями».
Большинство вибрационных колебаний имеют сложную природу и нелегко поддаются математическому анализу. Однако специфический тип колебаний, иллюстрацией которого является вибрация тугой струны, является исключением. Он может быть проанализирован сравнительно легко, и поэтому такой тип колебаний называется «простым гармоническим колебанием» (иногда сокращенно называемым SHM).
Как было обнаружено, в простых гармонических колебаниях все стадии движения находятся под действием закона Гука. Если мы тянем тугую струну из ее первоначального равновесного положения, величина перемещения от равновесного положения пропорциональна силе, которая старается восстановить это положение равновесия. Если отпустить натянутую струну, то сила упругости ускоряет ее в направлении равновесного положения. Другими словами, струна прыгает назад к состоянию равновесия, перемещаясь все быстрее и быстрее по мере движения.
По мере приближения струны к равновесному положению ее смещение от этого положения становится все меньше и меньше, и сила упругости пропорционально уменьшается. Поскольку уменьшение силы упругости, естественно, создает ускорение, которое передает струне, то, хотя по мере приближения к положению равновесия струна двигается все более быстро, приращение скорости становится все меньше и меньше. Наконец, когда струна достигла равновесия, сила упругости стала равна нулю и ускорение — тоже. Струна больше не может развивать скорость, и амплитуда ее движения равна максимуму.
Но, несмотря на то что струна не получает приращения скорости, она перемещается быстро и поэтому не может остановиться в положении равновесия, а двигается мимо него. Только сила может остановить ее перемещение (первый закон Ньютона), а в положении равновесия не имеется никакой силы, чтобы это сделать. Но поскольку струна проходит мимо точки равновесия, ее перемещение вызывает возникновение силы упругости; эта сила производит ускорение, которое служит, чтобы уменьшить скорость движения струны (которая теперь двигается в направлении, противоположном действию силы). Так как струна продолжает двигаться, ее смещение и сила упругости продолжают увеличиваться, скорость уменьшается все быстрее и быстрее, пока не достигнет нуля. Струна теперь опять неподвижна в точке максимального смещения, которая является равной величине первоначального смещения (когда мы оттянули струну рукой).