(Вы можете задать вопрос: почему же мы желаем воспользоваться приблизительным равенством, ведь наука должна оперировать только точными отношениями? Ответ таков: иногда следует удовлетвориться аппроксимацией (т. е. максимально приближенным значением) — в этом случае мы можем обращаться с маятником как с примером простых гармонических колебаний и производить некоторые другие вычисления, весьма простые, пусть даже и не совсем точные.)
Например, как мы уже определили, период (t) простых гармонических колебаний объекта равен: 2πm/k (другая форма той же записи — см. уравнение 8.4).
Символ к представляет собой отношение силы упругости к смещению, для которого в случае маятника мы нашли значение в уравнении 8.8; там оно установлено приблизительно равным mg/l При объединении уравнений 8.4 и 8.8 (и при сохранении символа приблизительного равенства) мы можем заявить, что период умеренно качающегося маятника равен:
Как вы видите, период умеренно качающегося маятника не зависит от массы отвеса, а зависит (по крайней мере, в весьма хорошем приближении) от квадратного корня из длины струны, что, собственно, в далеком XVI столетии и определил Галилео экспериментальным путем.
Присутствие в уравнении величины g — ускорения, вызванного силой тяжести, — имеет очень важное значение. Если преобразовать уравнение 8.9 так, чтобы выразить значение g, то мы получим:
Это дает нам гораздо более легкий метод для измерения g, чем непосредственное измерение скорости свободного падения. Длина маятника определяется легко, и его период — также. Использование маятников во времена Ньютона показало, что изменение g в зависимости от широты местности, где производятся измерения, и добавило еще одно экспериментальное подтверждение к предположению Ньютона, что Земля имеет форму сплющенного сфероида.
Так как период умеренно качающегося маятника практически является константой, это его свойство может использоваться для измерения времени. Если маятник связан с зубчатыми колесами таким способом, что с каждым колебанием маятника колесо продвигается вперед только на один зубец, это движение тогда легко может быть преобразовано таким образом, чтобы подвинуть один указатель по кругу, составляющему точно один час (минутная стрелка), а другой указатель вокруг того же круга, но за двенадцать часов (часовая стрелка). Добавив в систему веса (гири), мы можем компенсировать затухание колебаний маятника, которое вызвано трением и сопротивлением воздуха.
Будучи уже в преклонном возрасте, Галилео имел возможность увидеть практическое применение этого его открытия, сделанного в далекой юности. Оно было осуществлено голландским ученым Христианом Гюйгенсом (1629–1695) в 1673 году. Гюйгенс не стал даже учитывать несовершенство маятника. Он показал, что физический маятник — это не математический маятник и имеет отвес некоторого конечного объема, подвешенный на струне или прутке, имеющем некую конечную массу. Он также показал, что если маятник качается по кривой, которая не является дугой окружности, а двигается по траектории гораздо более сложной кривой, называемой «циклоидой», то тогда его период будет константой. Кроме того, он показал, как можно сделать маятник, который качался бы по такой циклоидальной дуге.
С того времени использовались многие изобретательные методы, предназначенные для того, чтобы принять во внимание тот факт, что длина маятника (и поэтому его период) слегка изменяется также в зависимости от температуры окружающей среды.
Другие представители простых гармонических колебаний могут использоваться для измерения времени. Гук (тот, что открыл закон Гука) изобрел «волосок» — тонкую спиральную пружину, которая может применяться для того, чтобы развертываться и свертываться, совершая простые гармонические колебания. Работа тонкой пружины поддерживается при помощи разматывания большой «главной пружины», которую периодически подтягивают при помощи механического привода — «заводят». Такие волосковые пружины используются в наручных часах, где нет места для маятника и в которых (даже если бы место существовало) движения руки немедленно приведут маятник в беспорядочное движение.
В последние годы (конец XX века. — Пер.) для измерения времени используются колебания атомов, которые перемещаются внутри молекул в соответствии все с теми же законами простых гармонических колебаний. Такие «атомные часы» обладают гораздо большей точностью и стабильностью, чем любые из часов, которые могут быть созданы на основе механики макромира.
Я предполагал, что «тела», которые мы до этого рассматривали, были «твердыми», то есть что они являются более или менее жесткими и имеют определенную неизменяемую форму. Они сопротивляются любой силе, имеющей тенденцию к изменению или деформации этой формы (хотя если мы будем увеличивать силу без предела, то в конечном счете достигнем точки, в которой даже наиболее твердая форма будет деформироваться или ломаться). Твердые тела рассматривались как сплошные, то есть если часть твердого тела двигалась, то и все тело двигалось таким образом, чтобы сохранить свою форму.
Однако есть такие тела, которые не имеют определенной формы и не сопротивляются деформации. Если приложить к ним даже маленькое усилие, которое будет сокращать или вытягивать их, они в ответ изменят свою форму. В частности, они реагируют на силу тяжести и изменяют свою форму таким образом, чтобы свести свою потенциальную энергию к минимуму. В ответ на гравитацию такие тела будут перемещаться максимально вниз и в максимально возможной степени сглаживаться; таким образом, они будут принимать форму любого контейнера (сосуда), в котором они находятся. Если наклонить открытый сверху контейнер или если в его основании сделать отверстие, материал под влиянием силы тяжести выльется и примет новое положение, в котором его потенциальная энергия еще меньше, то есть — на стол, на пол или в отверстие. Эта способность литься или течь и дала имя таким телам — «текучие» (fluids) от латинского слова, означающего «течь».
Текучие тела делятся на два класса. В одном классе направленная вниз сила тяжести первостепенна, то есть текучее тело, принимающее форму контейнера, собирается в самой нижней части его и не обязательно заполняет контейнер полностью. Такие текучие тела имеют если и неопределенную форму, но определенный объем и называются «жидкостями» (также от латинского слова, означающего «течь»). Наиболее знакомая и хорошо известная нам жидкость, конечно, вода.
В другом классе текучих тел направленной вниз силе тяжести противостоят другие эффекты, которые мы будем рассматривать в более поздних главах. В этом классе также имеется некоторая концентрация тела к основанию контейнера, но она недостаточна, чтобы заметить ее при обычных условиях. В целом такие текучие тела распространяются более или менее равномерно по всему ограниченному пространству и не имеют никакого собственного, определенного объема. Такие текучие тела — без определенной формы или определенного объема — называются «газами».
Наиболее хорошо знакомый нам газ — воздух. Я рассмотрю по отдельности оба класса этих разнообразных текучих тел и начну с жидкостей.
Вес объекта, как я рассказывал раньше, является направленной вниз силой, которая приложена к объекту и является ответом на гравитационное притяжение. В случае твердых тел эта сила проявляет себя через любую часть своей нижней поверхности, посредством которой оно вступает в контакт с другим телом. Так как нижняя поверхность обычно шероховатая (даже если это видно только через микроскоп), сила неравномерна: она приложена в тех точках, где имеется фактический контакт, а не в тех, где контакта в действительности нет. По этой причине обычно принято говорить только относительно полной направленной вниз силы, приложенной твердым телом.
В случае жидкости, однако, контакт между ее нижней поверхностью и объектом, на котором она находится, весьма гладок и равномерно распределен, так что все части поверхности получают равную долю. Поэтому для жидкостей становится удобным говорить относительно веса (или, более правильно, силы), приложенной на единицу площади. Эта величина — сила на единицу площади — называется «давлением».
Обычно для измерения давления используют такие единицы, как «фунты на квадратный дюйм» (иногда также используется сокращение «psi»); в этом случае фунты являются единицей веса, но никак не единицей массы.
В метрической системе соответствующие единицы измерения давления — ньютон на квадратный метр — в системе МКС и дина на квадратный сантиметр — в системе СГС. Так как один ньютон равен 100 000 дин, а квадратный метр равняется 10 000 квадратных сантиметров, то 1 н/м2 равен 100 000 дин на 10 000 квадратных сантиметров, или 10 дин/см2. Зависимость между английскими и метрическими единицами измерения такова: 1 фунт на квадратный дюйм равен 6900 н/м2, а 1 грамм на квадратный сантиметр равен 98 н/м2.
Предположим, что мы рассматриваем один квадратный сантиметр основания контейнера (сосуда), заполненного жидкостью до высоты, равной п. Давление (дин/см2) зависит от веса жидкости, опирающейся на этот квадратный сантиметр. Вес зависит, по крайней мере частично, от объема этого столба жидкости размером в один квадратный сантиметр в площади поперечного сечения и высотой в n сантиметров. Объем этого столба равен n кубических сантиметров.
Однако из того, что мы знаем объем вещества, отнюдь не следует, что знаем его вес. Общеизвестно, что вес тела данного объема изменяется в зависимости от материала, из которого состоит это тело. Например, мы готовы признать, что железо «более тяжелое», чем алюминий. Но при этом, конечно, предполагается, что данный объем железа является более тяжелым, чем тот же самый объем алюминия. (Если мы уберем это ограничение равенства объемов, то тут же столкнемся с фактом, что большой слиток алюминия обладает гораздо большим весом, чем железный гвоздь.)
Для любого объекта существует характеристика, которая выражает количество его веса в единице его объема и называется «плотностью тела»; в метрической системе единицей измерения плотности обычно является грамм (веса) на кубический сантиметр или килограмм (веса) на кубический метр. Поэтому было бы более верно сказать, что железо скорее «более плотное», чем «более тяжелое», чем алюминий.
Если высота столба жидкости, опирающейся на единицу площади поверхности, определяет ее объем, а плотность этой жидкости является ее весом на единицу объема, то полный вес на единице площади, или давление (p), равен высоте столба жидкости (h), умноженной на ее плотность (d):
Давление жидкости на основание контейнера поэтому зависит только от высоты и плотности жидкости, а не от формы контейнера или полного количества жидкости в этом сосуде. Это означает, в частности, что на приведенном рисунке различные сосуды, обладающие одинаковым основанием, но различной формой и содержащие различное количество жидкости, будут испытывать равное давление на свое основание.
Легко видеть, что сосуд с расширенной верхней частью должен испытывать то же самое давление на основание, поскольку верхняя горизонтальная часть сосуда явно содержит дополнительное ее количество. Но отнюдь не кажется логичным тот факт, что сосуд с зауженной верхней частью также должен испытывать то же самое давление на основание. Жидкость, которая отсутствует из-за сужения сосуда, ведь не вносит свой вклад в общее давление? Каким же образом тогда получается, что величина давления остается такой же, как если бы жидкость там присутствовала?
Чтобы объяснить этот факт, мы должны понять, что давление в жидкостях распространяется по-другому, не так, как в твердых телах. Твердое тело сопротивляется деформирующему влиянию собственного веса. Большая мраморная колонна (столб) может стоять прямо на каменном полу и передавать на этот пол достаточно большое давление, но сама она под действием собственного веса перемещаться не будет. Колонна не будет также выпирать посередине, и если мы приложим к ней ладони, то не почувствуем никакого бокового давления.
Давайте теперь представим себе такой же столб, но сделанный из воды. Понятно, что он не просуществует и доли секунды. Под силой своего собственного веса он «выпятится» в разные стороны наружу, в каждой точке по всей его длине и «рассыплется». Если же водяной столб заключен в замкнутый алюминиевый сосуд, то свойство воды «выпячиваться наружу», очевидно, проявит себя в виде некоторой поперечной силы. Если в алюминиевом цилиндре просверлить отверстие, то вода будет выплескиваться вбок под влиянием этой самой силы. Применяя ту же логику рассуждений, мы можем показать, что и по отношению к наклоненной диагонально стенке вода при контакте проявит себя подобным же образом.
Жидкость действительно осуществляет давление во всех направлениях, и особенно в направлении, перпендикулярном к любой поверхности, с которой она вступает в контакт. Величина давления, приложенного в любой данной точке, зависит от высоты жидкости над этой указанной точкой. Таким образом, если в цилиндрическом сосуде с водой просверлено отверстие, то жидкость будет выплескиваться с большей силой, если отверстие около основания (высота жидкости над отверстием) больше, и с меньшей, если это отверстие находится около поверхности воды (высота жидкости над отверстием — меньше).
Таким образом, как изображено на рисунке, в горизонтальной секции сосуда с зауженной частью имеется давление жидкости. Величина этого давления зависит от высоты жидкости над этой горизонтальной секцией. В соответствии с третьим законом Ньютона верхняя горизонтальная секция прикладывает равное давление вниз на жидкость. Направленное вниз давление горизонтальной секции равно тому, которое было бы вызвано отсутствующей жидкостью, если бы она там была, и, таким образом, давление на дне сосуда остается тем же.
Обобщение, рассматривающее давление в жидкостях, которое мы привели в предыдущем абзаце, впервые было использовало и ясно обосновано французским математиком Блезом Паскалем (1623–1662) и поэтому часто упоминается как «принцип Паскаля».
Это обобщение может быть выражено следующим образом: давление жидкости в замкнутом сосуде распространяется одинаково во все стороны, одинаково по всей его граничащей с жидкостью поверхности и направлено под прямым углом к стенкам сосуда.
Этот же принцип можно использовать для объяснения такого известного факта, что, если сосуд с жидкостью содержит два или более отверстий, к которым подсоединены трубки различной формы, по которым жидкость может свободно подниматься, и если в сосуде находится достаточное количество жидкости, то уровень жидкости в трубках будет точно соответствовать уровню жидкости в сосуде, невзирая на разницу в форме.
Чтобы объяснить это явление, давайте рассмотрим частный случай сосуда с двумя отверстиями и представим себе, что этот сосуд разделен пополам подвижной вертикальной стенкой, проходящей посередине между этими двумя отверстиями. Давление слева от разделения будет зависеть от высоты жидкости слева, в то время как давление справа будет зависеть от высоты жидкости справа. Если столб жидкости слева выше, то давление жидкости на левой стороне больше, чем таковое на правой стороне, соответственно имеется разность давлений слева направо. Жидкость вынуждена смещать разделение в этом направлении так, чтобы высота столба жидкости на левой стороне уменьшилась, а справа — увеличилась. Когда высоты обоих столбов жидкости сравняются, то разность давлений исчезает и стенка перестает перемещаться.
Этот эффект издавна известен в народе, что подтверждает пословица: «Каждая вода ищет свой уровень».
Прошу вас обратить внимание на тот факт, что я считаю само собой разумеющимся, что жидкости будут двигаться, или течь, в ответ на воздействие некоей внешней силы. Законы движения применяются к жидкостям так же, как к твердым телам, и изучение механики, в его широком смысле, включает в себя изучение сил и движений не только в твердых телах, но и в жидкостях. Однако общим правилом является ограничение использования термина «механика» только твердыми телами. Механике жидкостей посвящена специальная область науки, называемая «гидродинамика» (от греческих слов, означающих «движение воды»), а механике газов — своя область, называется «пневматика» (от греческого слова, означающего «воздух»). Иногда эти две области науки группируют вместе под общим названием «гидроаэромеханика».
Не только собственно вес жидкости может быть преобразован в давление всех ее частей, но и всякая другая внешняя сила.
Например, предположим, что жидкость полностью заполняет сосуд с двумя отводами, каждый из которых закупорен подвижным поршнем; для простоты будем считать поршни невесомыми. Предположим, кроме того, что отводы имеют различную ширину, так что поршень в большем отводе имеет площадь поперечного сечения, равную 10 см2, в то время как поршень в меньшем отводе имеет площадь поперечного сечения, равную всего лишь 1см2.
Теперь представьте себе, что к меньшему поршню приложена сила, равная одной дине. Так как площадь поверхности меньшего поршня равна 1 см2, то давление на него, полученное в результате приложения этой силы, равно 1 дин/см2. В соответствии с принципом Паскаля это давление передается через все тело жидкости неизменным и направлено перпендикулярно ко всем стенкам. В частности, данное давление перпендикулярно той части стенок, которая представляет собой больший поршень. И поскольку поршень меньшего размера перемещается вниз, то поршень большего размера будет перемещаться вверх.
Восходящее давление против большего поршня должно быть тем же самым, что и нисходящее давление против меньшего поршня, то есть 1 дин/см2. Однако площадь поверхности большего поршня равна 10 см2. Поэтому полная сила, которая действует на больший поршень, равна 1 дин/см2, умноженной на 10 см2, или 10 дин. Полная сила была умножена в десять раз, и соответственно вес, который могла поднять первоначальная сила, также будет увеличен в десять раз. Приспособление, которое называется «гидравлическим прессом», основано на этом эффекте, означающем, что тяжелые грузы могут быть подняты при помощи разумного количества силы.
Что же, мы опять получаем нечто из ничего? Нисколько! Предположим, что мы нажимаем на маленький поршень (площадью 1 см2) и заставляем его переместиться на расстояние в 1 см.
Объем жидкости, которую это заставило переместиться, равен 1 см2, умноженному на 1 см, то есть одному кубическому сантиметру (1 см3). Больший поршень (площадью 10 см2) может переместиться вверх лишь на расстояние, достаточное для того, чтобы вместить этот перемещенный 1 см3 жидкости. Требуемое расстояние равно 1 см3 поделить на 10 см2 или 0,1 см. Таким образом, создалась такая же ситуация, как в случае рычага. Да, полученная сила стала десятикратно увеличенной, но расстояние, на котором действует эта сила, уменьшилось в десять раз. Полная работа (сила, умноженная на расстояние), полученная на выходе гидравлического пресса, остается такой же (если мы пренебрегаем такими вещами, как трение), как полная работа на его входе.
Давление жидкости передается не только стенкам сосуда, но также и (перпендикулярно) поверхностям любого твердого объекта, находящегося в пределах жидкости. Представьте себе железный куб, опущенный в жидкость таким образом, что верхняя поверхность и основание куба совершенно горизонтальны, а другие четыре поверхности — совершенно вертикальны. Давление на каждую из четырех вертикальных поверхностей зависит от высоты жидкости над ними, а она является одинаковой для всех. Таким образом, для вертикальных поверхностей мы имеем равные давления, направленные попарно и противоположно. Следовательно, в любом из направлений не существует никакого суммарного поперечного давления.
Но что, если мы рассмотрим две горизонтальные поверхности — верхнюю и основание? Ясно, что для нижней поверхности высота жидкости больше, а для верхней поверхности — меньше. Поэтому возникает сравнительно большое восходящее давление, приложенное к нижней поверхности, а ему противостоит сравнительно небольшое нисходящее давление, приложенное к верхней поверхности. В результате на тело, погруженное в жидкость, начинает действовать результирующая сила, направленная вверх. (Это наиболее легко проследить в случае твердого куба, но можно показать, что такое утверждение справедливо для твердого тела любой формы или, если это имеет значение, для погруженной капли жидкости или пузырька газа.) Эта выталкивающая вверх сила, с которой жидкость действует на погруженные в нее объекты, называется «плавучесть».