Насколько же велика эта выталкивающая сила? Рассмотрите твердое тело, погруженное в жидкость, содержащуюся в контейнере. Твердое тело должно создать место для того, чтобы разместить собственный объем, раздвигая или перемещая эквивалентный объем жидкости; уровень жидкости в контейнере соответственно повышается, чтобы разместить этот перемещенный объем.
Из рассмотренного следует, что твердое тело при погружении прикладывает к жидкости направленную вниз силу, достаточно большую, чтобы сбалансировать вес собственного объема твердого тела жидкостью. В соответствии с третьим законом Ньютона ожидается, что жидкость, в свою очередь, приложит к твердому телу эквивалентную выталкивающую силу, равную весу все того же количества жидкости.
Первоначальный вес погруженного тела равен его объему (V), умноженному на его плотность (D). Вес вытесненной жидкости равен ее объему (который является равным объему погруженного твердого тела и, следовательно, также равен V), умноженному на ее плотность (d). Вес тела после погружения (W) равен его первоначальному весу минус вес вытесненной воды:
Решая данное уравнение для D (плотность погруженного твердого тела), мы имеем:
Вес погруженного тела (W) может быть непосредственно измерен, объем вытесненной жидкости (V) — получен сразу после измерения повышения уровня жидкости и площади поперечного сечения сосуда, а плотность жидкости (d) также может быть легко измерена. Имея эти данные, мы легко можем рассчитать из уравнения 9.3 плотность погруженного тела.
Этот метод измерения плотности был открыт в III столетии до н.э. великим греческим математиком Архимедом. История гласит, что царь Гиерон из Сиракуз, получив золотую корону от ювелира, заподозрил того в нечестности. Царь чувствовал (а точнее, ему донесли), что ювелир сплавил золото с более дешевым серебром и присвоил себе разницу. Царь дал указание Архимеду определить: так ли оно было сделано. Естественно, корону повреждать было нельзя.
Архимед знал, что плотность короны, сделанной из серебряного сплава, будет меньше, чем золотой, но он не мог найти способ измерить плотность короны. Для определения плотности ему было необходимо знать как вес, так и объем короны. Однако если вес короны он мог узнать легко, то как узнать объем короны, не придавая ей формы куба, сферы или другой формы, для которой геометрией того времени была разработана методика расчета объема, он не знал. Кроме того, Гиерон не одобрил бы такое «изменение формы» со всеми вытекающими из этого факта последствиями.
Как гласит легенда, принцип плавучести пришел в голову Архимеду, когда он лег отдохнуть в полную ванну и увидел вытесненную из нее на пол воду. История донесла до нас зрелище голого, бегущего по улицам Сиракуз Архимеда. Он бежал, крича: «Эврика! Эврика!» («Я нашел! Я нашел!») Погрузив в воду корону и измерив повышение уровня воды, а также зная ее вес, и сделав то же самое с куском чистого золота равного веса, он сразу смог сообщить, что плотность материала, из которого была сделана корона, значительно меньше, чем у золота; соответственно ювелир был наказан. А основные принципы плавучести с тех пор называются «законы Архимеда».
Погруженное тело имеет большую плотность, чем плотность жидкости, в которую оно погружено, то есть D больше, чем d, и VD, естественно, больше, чем Vd. Из уравнения 9.2 мы видим, что в этом случае вес (W) погруженного тела должен быть положительным числом. Вес тела уменьшается, но все же он еще больше, чем нуль, и тело тонет в жидкости. (Подобным образом, твердый — железный или алюминиевый — предмет тонет в воде.)
Однако если погруженное тело имеет меньшую плотность, чем плотность жидкости, в которую оно погружается, то есть D меньше, чем d, VD меньше, чем Vd, то погруженное тело имеет вес, который выражается отрицательным числом. С отрицательным весом тело в ответ на поле тяготения скорее перемещается вверх. (Таким образом, деревянная палочка или пузырек воздуха, погруженные в воду, будут «падать вверх», как только мы перестанем их удерживать под водой и позволим им свободно двигаться.)
Тело, обладающее меньшей плотностью, чем окружающая его жидкость, будет плавать, частично погруженное, на поверхности этой жидкости; в этом состоянии вес воды, которую это тело вытеснило, равен его собственному первоначальному весу; в таком случае его вес в воде равен нулю и оно не всплывает и не тонет. Твердое тело плавает, когда оно вытеснило такое количество воды (меньшее, чем его собственный объем), чтобы оно равнялось его собственному первоначальному весу.
Однако, несмотря на то что стальное судно плавает, это не означает, что плотность стали меньше, чем плотность воды. Ведь не сталь в одиночку вытесняет воду. Внутри судна находится воздушная полость, то есть по мере погружения в воду находящийся там воздух вытесняет воду так, как это делает стальной корпус. Суммарная плотность же сплава «сталь плюс вложенный воздух» является меньшей, чем плотность воды, хотя плотность стали в одиночку конечно же нет; вот поэтому стальные суда и плавают.
Сила плавучести, между прочим, это не только вопрос вычислений и теории; ее можно легко почувствовать. Поднимите тяжелый камень из воды, и вы почувствуете, как он внезапно увеличился в весе, едва попав на воздух. Опустите в воду большой кусок древесины и попробуйте его утопить; вы увидите, что дерево как бы «сопротивляется» вашим попыткам, — это сила плавучести выталкивает дерево из воды, и вы можете почувствовать ее «своими руками».
Твердые тела, как я уже сказал в начале главы, действуют как единое сплошное целое. Каждый фрагмент твердого объекта крепко сцепляется с любым другим его фрагментом; таким образом, если вы схватили один участок камня и поднимаете его, то поднимается целиком и весь камень. Это свойство фрагментов — сцепляться вместе — называется «когезией» (cohesion — от латинских слов, означающих «сцепляться»).
В жидкостях нет ничего подобного когезии твердых тел. Если вы опустите руку в воду, стараясь «зацепить» ее, надеясь на то, что вся жидкость поднимется из сосуда вслед за вашей рукой, вы только намочите пальцы — и все. Однако из этого нельзя заключить, что в жидкостях сила когезии полностью отсутствует. Эта сила в большинстве жидкостей намного меньше, чем в твердых телах, но она не равна нулю. Это наиболее четко можно увидеть, когда мы рассматриваем поверхность жидкости.
В теле жидкости, даже совсем рядом с ее поверхностью, данная часть жидкости связана силами сцепления с другими частями жидкости, которые окружают ее, одинаково во всех направлениях. В любом заданном направлении мы не можем обнаружить никакой суммарной неуравновешенной силы. На поверхности же жидкости, однако, силы сцепления направлены только внутрь, в тело жидкости, и не направлены наружу, где никакой жидкости, чтобы вызвать к жизни силы сцепления, нет. (Наиболее часто с другой стороны поверхности жидкости находится только воздух, а силы притяжения между воздухом и жидкостью настолько малы, что их можно игнорировать.) Результирующая этой полусферы сил сцепления, построенной относительно частицы жидкости на поверхности, направлена внутрь жидкости и расположена перпендикулярно этой поверхности.
Чтобы дать возможность поверхности жидкости противостоять этой внутренней силе, требуется выполнить работу, поэтому поверхность представляет собой форму потенциальной энергии. Такая специфическая форма потенциальной энергии обычно называется «поверхностной энергией».
Такая поверхностная энергия распределена по площади поверхности, таким образом, ее единицы измерения — работа на площади. В системе МКС это джоули на квадратный метр (Дж/м2), а в системе СГС это будут эрги на квадратный сантиметр (эрг/см2). В случае поверхностной энергии чаще используется система СГС, как более удобная. Один эрг равен 1 дин-см, или 1 г-см2/с2, так что 1 эрг/см2 равен 1 (г-см2/с2)см2. Если мы сократим на одну из единиц измерения (сантиметры), то получим 1 (г-см/с2)/см, или I дин/см; фактически наиболее часто пользуются последними из представленных единиц измерения поверхностной энергии — дин/см (дина на сантиметр).
Предоставленная самой себе поверхностная энергия приходит к минимуму способом, аналогичным тому, как гравитационная потенциальная энергия приходит к минимуму всякий раз, когда шар, находящийся высоко в воздухе, падает на землю или когда водяной столб снижается и растекается, если целостность сосуда с жидкостью нарушена. Небольшое количество жидкости, когда оно находится во взвешенном состоянии, в воздухе, приобретает форму сферы; поскольку сфера обладает для данного объема самой маленькой площадью поверхности, то поверхностная энергия тоже становится минимальной. Такая сфера из жидкости, однако, искажается в «неправильный» объект неуравновешенным нисходящим напряжением силы тяжести. Если она падает в воздухе, как это делает, например, дождевая капля, то ее основание будет сплющено благодаря восходящей силе сопротивления воздуха. Чем меньше капелька жидкости, тем в меньшей степени воздействуют на нее относительные эффекты силы тяжести и сопротивления воздуха, и она становится все более сферической. Мыльные пузыри — полые, жидкие структуры, которые являются настолько легкими для их объема (из-за находящегося в них воздуха), что силы тяжести (необычно низкая в этом случае) и сопротивления воздуха (необычно высокая в этом случае) компенсируют друг друга. Мыльные пузыри поэтому дрейфуют по воздуху относительно медленно и имеют практически точную сферическую форму.
Значительное количество жидкости склонно к равномерному сглаживанию. Потребность в уменьшении гравитационной потенциальной энергии стоит выше потребности в уменьшении поверхностной потенциальной энергии; поэтому поверхность стоящего в покое ведра воды (или водоема с водой) кажется нам плоскостью. Фактически же это — сегмент сферы, но большой сферы, такой, которая имеет радиус, равный радиусу Земли. Посмотрите, как расположен Тихий океан на глобусе Земли, и вы увидите, что его поверхность почти сформировала полусферу.
Если энергия в любой форме добавляется к жидкостям, то некоторые из них умеют хорошо увеличивать поверхностную энергию, расширяя площадь своей поверхности за пределы ее минимума. Таким образом, ветер заставляет поверхность океана или озера стать неровной и поэтому увеличиться в площади. Поверхность в стакане воды будет пениться, если стакан взболтать.
Поскольку поверхность жидкости «растягивается» в большую, когда осуществляется такой ввод энергии, и потому, что она отступает к минимуму, когда ввод энергии прекращается, можно провести безошибочную аналогию между поверхностью жидкости и упругой оболочкой под растяжением (например, очень тонкая пленка из натянутой резины). Поэтому о поверхностных эффектах часто говорят как об эффектах, скорее вызванных «поверхностным натяжением», чем поверхностной энергией.
Те же самые силы сцепления, которые действуют, удерживая отдельные части жидкости через поверхностное натяжение, также удерживают части жидкости в контакте с частями соседствующего твердого тела. В этом, последнем, случае, когда сила притяжения скорее существует между твердым телом и жидкостью (не так, как между частицами), чем между частями жидкости (подобно частицам), такое явление называется «адгезией» (название это также, подобно когезии, происходит от латинских слов, означающих «сцепляться»). Силы прилипания (адгезии) могут быть столь же большими, как силы сцепления (когезии), или даже большими. В частности, адгезия воды к чистому стеклу — больше, чем когезия воды к самой себе.
Это вызывает эффект формы поверхности жидкости (воды) в стеклянном сосуде. В тех местах, где вода соприкасается со стеклом, притяжение воды к стеклу — достаточно большое, чтобы преодолеть силы сцепления воды. В результате поверхность воды повышается, чтобы в максимально возможной степени увеличить контакт на границе вода — стекло (или так называемую поверхность раздела) за счет более слабых «межводных» сил сцепления. Если бы не имелось никаких противодействующих сил, то вода бы повысилась до края сосуда и далее. Однако ей противодействует сила тяжести. Таким образом, существует некоторая точка, где вес поднятой воды, добавленный к силам сцепления воды, уравнивает восходящее натяжение «липких» сил, и эта точка равновесия достигается вскоре после того, как уровень жидкости поднимется на очень небольшой градус.
Если сосуд достаточно широк, то этот изгиб поверхности вверх ограничен только окрестностями водно-стеклянного контакта. Водная же поверхность в середине остается плоской. Когда же сосуд относительно узкий, поверхность жидкости целиком находится в области водно-стеклянного контакта; в этом случае поверхность жидкости не имеет плоских участков, вместо этого она формирует полусферу, прогнутую в центре трубки к ее нижней части. При взгляде со стороны поверхность походит на полумесяц, и поэтому это явление называется «мениском» (meniscus — от греческого слова, означающего «маленькая луна»).
Силы сцепления во многих случаях также могут быть значительно больше, чем силы прилипания. Например, силы сцепления в жидкой ртути намного больше, чем у воды; они также больше, чем силы прилипания между ртутью и стеклом. Если мы посмотрим на ртуть, находящуюся в стеклянной трубке, то увидим, что на поверхности раздела, где ртуть встречается со стеклом, ртуть отталкивается от стекла, уменьшая ртутно-стеклянную поверхность раздела. Ртутный мениск в такой трубке прогибается вниз по границе со стеклом и достигает максимальной высоты в центре трубки. Тот же самый эффект наблюдается даже для воды, если стеклянный сосуд имеет восковое покрытие, так как силы прилипания между водой и воском — меньше, чем внутренние силы сцепления в воде.
Если мы нальем воду на плоскую стеклянную поверхность, то она распространится в разные стороны, превратившись в тонкую пленку, чтобы создать наибольший возможный контакт, увеличивая полную силу прилипания за счет более слабой силы сцепления. Вода, другими словами, смачивает стекло. Однако когда мы нальем на поверхность стекла ртуть (или воду на вощеную поверхность), то она старается уменьшить контакт со стеклом, насколько это возможно, приобретая форму маленьких искривленных тяжестью сфер и увеличивая полную силу сцепления за счет более слабой силы прилипания. Ртуть не смачивает стекло, а вода не смачивает воск. Все эти явления являются результатом минимизации величины полной поверхностной энергии (энергии на границе жидкость/воздух плюс то же самое, но на жидкой/твердой поверхности раздела).
Если присоединить достаточно тонкую трубку к резервуару с водой, то мы сможем увидеть значительное повышение уровня воды в трубке над ее «естественным уровнем», вызванное восходящей силой адгезии.
Мы можем вычислить, какой должна быть высота подъема (h) уровня воды в данной трубке. Адгезия — форма поверхностного натяжения (обозначим ее греческой буквой «сигма» — σ), действующая по окружности трубки, там, где вода соприкасается со стеклом. Эта окружность имеет длину 2πr, где r — радиус трубки. Тогда суммарная подъемная сила, вызванная адгезией, равна поверхностному натяжению поверхности раздела вода — стекло, σ дин/см, умноженному на длину окружности, по которой происходит соприкосновение воды и стекла, то есть 2prσ, или, иными словами, полная сила равна 2prσ дин.
Этой восходящей силе противодействует направленная вниз сила тяжести, которая равна весу (mg дин) поднятой воды. Масса водяного столба, поднятая адгезией, равна его объему (V), умноженному на плотность (d) воды. Подставляя Vd для m, мы получаем, что вес воды равен Vdg дин. Так как поднятый в трубке столбик воды имеет форму цилиндра, мы можем использовать геометрическую формулу для объема цилиндра и сказать, что объем поднятой воды равен высоте столбика воды (h), умноженной на площадь поперечного сечения трубки (πr2), где r — радиус водяного столба. Заменив πr2h на V, мы получаем, что вес воды равен πr2hdg дин.
Как только вода в узкой трубке поднимется на свою максимальную высоту и остановится, восходящая сила прилипания будет сбалансирована нисходящей силой тяготения, так что мы можем написать следующее равенство:
Решив данное уравнение для h, получаем:
Ускорение свободного падения (g) является фиксированной величиной для любой данной точки земной поверхности и для любой специфической жидкости, поверхностное натяжение (s) и плотность (d) являются данными для специфических условий эксперимента. Важной переменной величиной является радиус трубки (r). Как вы видите, высота, на которую столб воды поднимается в узкой трубке, обратно пропорциональна радиусу трубки. То есть чем уже трубка, тем на большую высоту поднимается жидкость. Следовательно, данный эффект наиболее ярко проявляет себя в трубках (естественных или искусственно созданных) микроскопической толщины. Такие трубки называются «капиллярными трубками» (от латинского выражения, означающего «похожие на волосы»), а повышение уровня водяного столба в таких трубках называется «капиллярным явлением». Именно благодаря капиллярному явлению вода поднимается по узким каналам куска сахара или впитывается промокательной бумагой и (в большой степени) благодаря капиллярному явлению жидкости поднимаются по стеблям и стволам растений.
Опять же, если мы знаем значение плотности данной жидкости и высоту подъема ее столба в трубке известного радиуса (и высоту и радиус мы легко можем измерить), то из этого следует, что поскольку значение g нам также известно, то мы всегда можем рассчитать из уравнения 9.5 значение величины поверхностного натяжения (σ).
В случае ртути, где силы прилипания к стеклу направлены вниз, уровень ее уходит ниже, чем «естественный уровень». Степень же понижения уровня увеличивается по мере уменьшения радиуса трубки.
Мы уже знакомы с понятием существования силы трения как силы, которая направлена против той, что вызывает движение твердого тела по другому твердому телу. Такое трение имеет тенденцию замедлять, а затем и совсем прекращать движение тела, если только действующая на него сила не будет постоянной.
В случае, когда твердое тело двигается сквозь жидкость, например, судно рассекает воду, тоже существует трение. Несмотря на то что вода кажется настолько гладкой и недостаточно прилипчивой, чтобы «ухватиться» за судно, судно, однажды приведенное в движение, быстро остановится, его энергия будет поглощена преодолением трения с водой, если только двигающая его сила не будет энергично поддерживаться.
Это трение является результатом следующего факта: для того чтобы «раздвинуть» воду на промежуток, необходимый для продвижения судна (или любого другого объекта), необходимо израсходовать энергию, направленную на преодоление ее собственных сил сцепления. Израсходованная энергия изменяется в зависимости от формы объекта, перемещающегося сквозь жидкость. Если жидкость «раздвигают» таким образом, что при этом образуются водовороты и другие неровности движения (называемые «турбулентностью»), израсходованная энергия умножается, и движение прекращается гораздо скорее; чтобы предотвратить остановку, двигающая сила должна быть в значительной мере увеличена. Если же, напротив, жидкость «раздвигают» постепенно, передним краем перемещающегося объекта, и позволяют ей сомкнуться сразу позади объекта, так что турбулентность снижена до минимума, израсходованная энергия значительно снижается, и сила, требующаяся для того, чтобы поддерживать движение, соответственно снижается. «Обтекаемая» форма тела — это такая форма, которая представляет собой гладко изогнутый, сужающийся фронт и резко сужающийся тыл — форма капли воды, падающей сквозь воздух, рыб, пингвинов, тюленей и китов, плывущих сквозь воду. Такая форма используется и в устройствах, сделанных человеком, тогда, когда требуется добиться максимально экономичного движения сквозь жидкую среду. Эта форма, необходимая человеку, была получена методом проб и ошибок задолго до того, как было выдвинуто теоретическое обоснование всего процесса.
Величина трения между перемещающимся твердым телом и окружающей его жидкостью увеличивается вместе со скоростью. Таким образом, на тонущий объект действует ускорение силы тяжести, которое преодолевает сопротивление силы трения тела с водой. Однако в то время как скорость падения (а тонущее тело фактически «падает» сквозь воду) тела увеличивается, соответственно увеличивается и трение; сила же тяжести, конечно, остается постоянной. В конечном итоге сила сопротивления трения возрастает до такого значения, когда она компенсирует силу тяжести, а ускорение тогда становится равным нулю. Когда это происходит, тело начинает «проваливаться» в жидкость с постоянной «предельной» скоростью.
Мы сами не раз встречались с проявлением силы трения, возникающей при движении твердого тела сквозь жидкость. Любой, кто пробовал идти по пояс в воде, не может не чувствовать необычно большого потребления требуемой энергии и эффекта «замедленной съемки».
Трение проявляет себя даже тогда, когда сама жидкость — единственная вовлеченная в процесс сущность. Когда жидкость двигается, она не перемещается «единым целым», как это делает твердое тело. Вместо этого данная часть жидкости будет перемещаться относительно соседней части, и «внутреннее трение» между этими двумя частями будет противостоять движению. Когда силы сцепления, которые являются источником этого внутреннего трения, низки, как в воде, мы обычно не очень ощущаем их. Когда же они высоки, как, например, в глицерине или в сахарном сиропе, жидкость льется медленно, так медленно, что мы, приученные к сравнительно быстрому водному потоку, обычно начинаем проявлять нетерпение. Внутреннее трение становится выше при низких температурах и меньше — при высоких температурах. Как говорят в народе: так медленно, как патока в январе (as slow as molasses in January) — это выражение ярко отражает нашу нетерпеливость.
О такой медленно наливающейся жидкости говорят как о «вязкой», от латинского слова viscosity, означающего липкую разновидность птичьего клея, который имеет такое свойство. Внутреннее трение, определяющее манеру, в которой будет литься жидкость, называется «вязкостью». Существуют жидкости, которые являются настолько вязкими, что силы тяжести недостаточно, чтобы заставить их литься потоком, преодолевая силы внутреннего трения. Стекло — образец такой жидкости; ее вязкость такова, что оно, с обычной, ненаучной точки зрения, кажется нам твердым телом.
Чтобы рассмотреть измерение величины вязкости, представим себе два параллельных слоя жидкости, каждый из которых является прямоугольником площадью, равной a, и разделенных расстоянием, равным d. Чтобы заставить один из этих прямоугольников двигаться относительно другого со скоростью, равной v, преодолевая сопротивление внутреннего трения, потребуется сила, равная f. Оказывается, что связь между всеми этими величинами может быть выражена следующим уравнением:
где η (греческая буква «эта») является постоянной величиной (константой) при данной температуре и представляет собой меру вязкости.