Фармакологическая помощь спортсмену: коррекция факторов, лимитирующих - Кулиненков Олег Семенович 14 стр.


Понимание биохимических механизмов перестройки метаболизма при ишемии и реперфузии позволяет принимать действенные меры, направленные на ослабление патологических последствий таких изменений на ткани сердца. Применяемая терапия должна способствовать снижению энергетического дефицита тканей, исключать случаи кальциевой перегрузки клеток и корректировать уровень активных форм кислорода.

Особенности адаптации сердца спортсмена. При фармакологической защите сердечно-сосудистой системы особо контролируется риск снижения сократительной способности миокарда и потеря эластичности клапанного аппарата сердца и сосудов.

Спортивная медицина (Дембо А.Г., Дибнер Р.Д., Загородный Г.М.) выделяет особенности ЭКГ у спортсменов:

– синусовая брадикардия (умеренная – 50-55, выраженная – меньше 50 сокращений в минуту);

– синусовая аритмия (до 15%);

– эктопический предсердный ритм в покое с восстановлением синусового ритма после физической нагрузки;

– неполная блокада правой ножки пучка Гиса постоянного характера;

– синдромы предвозбуждения желудочков (кроме WPW, CLC);

– деформации желудочкового комплекса, проходящие на вдохе, не являющиеся последствиями клинически подтвержденных заболеваний сердечно-сосудистой системы;

– умеренное удлинение интервала QT (не более 10%) у спортсменов, тренирующих выносливость;

– атриовентрикулярная блокада I степени;

– стойкий синдром ранней реполяризации у спортсменов, тренирующих выносливость.

Эта условная норма в любой момент при интоксикации метаболитами (эндогенными или экзогенными) может выйти за рамки своей условности.

Метаболические нарушения в миокарде выражаются в изменении положения на ЭКГ сегмента S-T, изменении продолжительности интервалов P-Q, Q-T, изменении комплекса QRS и снижении или инверсии зубца Т, изменении ритма сердечных сокращений вплоть до появления экстрасистол. В качестве дополнительного исследования применяются ЭхоКГ, функциональные пробы, суточный ЭКГ-мониторинг.

Если рассматривать метаболические сдвиги, как совокупность отличных от нормы состояний адаптации, обусловленных измененной реактивностью, вследствие длительного напряжения, превышающего индивидуальную физиологическую норму функционирования системы, можно говорить о напряжении в работе сердечной мышцы или предпатологии. Если процесс не останавливается, он, протекая клинически скрыто, продолжает активно, динамически развиваться. С усугублением процессов нарушения метаболизма происходит расстройства на всех уровнях: информационном, энергетическом, пластическом. Здесь особое значение имеет своевременная диагностика: ЭКГ, УЗИ, биохимия крови, психологическое и физиологическое тестирование.

Лечение проводится после того, как выявлен тип нарушения в работе сердца. Чаще всего это измененные процессы реполяризации по дисметаболическому или вегето-дисрегуляторному типу; дисциркуляторные формы по гипертоническому или гипотоническому типу; аритмии; смешанные формы нарушений.

Фармакологическая защита сердца спортсмена. Обеспечение достаточной энергией при замедлении окислительных процессов метаболизма – ключевой момент при повреждении клеток миокарда. Этот фактор приобретает особую важность в клинической практике, так как недостаточное тканевое содержание фосфокреатина приводит к ослаблению силы сокращения сердца и способности его к функциональному восстановлению.

Так, при поражении миокарда существует тесная связь между содержанием в клетке высокоэнергетических фосфорилирующих соединений, выживаемостью клетки и способностью к восстановлению функции сокращения.

Кардиозащитное действие фосфокреатина связано со стабилизацией сарколеммы, с сохранением клеточного резервуара энзимов, необходимых для поддержания макроэргов на достаточном уровне.

Введение высокоэнергетических фосфорилирующих соединений (макроэрги) ограничивает поражение миокарда и составляет основу в метаболической защите сердца, а также способствует восстановлению функции сокращения. Клетки сердца особенно нуждаются в эффективном энергетическом обеспечении, так как содержат большое количество митохондрий. Гибель клетки начинается с повреждения мембран митохондрий.

В циклических видах спорта, направленных на преимущественное развитие выносливости, накопление метаболитов (молочная кислота и др.), вызывающих вазодилятацию сосудов мышц и кожи, может привести к постнагрузочному коллапсу.

Для фармакологической коррекции при выраженных метаболических нарушениях вследствие экстремальных физических нагрузок применяются:

– неотон (фосфокреатин) 2-4 г, в/в, медленно, однократно или в той же дозировке, 5-7 дней;

– креатин моногидрат, 3-5 г (доза зависит от веса спортсмена) в сутки, 2-4 недели;

– аминокислоты с разветвленными цепями в достаточных дозах;

– анаболические препараты, экстрагированные из растительного сырья;

– препараты калия и магния: магнерот, калия оротат, аспаркам (панангин) по 1 таб. 3 раза в день, 3 недели;

– милдронат, 10 мл, в/в, 5 инъекций, далее 2 капе. 2 раза в день, 2-3 недели;

– рибоксин (инозин) по 1 таб. 3 раза в день, 3 недели;

– бенфогамма, по 1 драже ежедневно, 3-4 недели;

– янтарная кислота 0,25-0,5 г 2-3 раза в день после окончания курса неотона;

– лецитин, эссливер, эссенциале, эссенциальные фосфолипиды;

– маточное молочко (апилак), пчелиная пыльца (хлебина, пчелиная обножка).

Назначение препаратов должно быть направлено на профилактику повреждения сердечной деятельности, а также соответствовать выявленной форме патологии.

При незначительных функциональных нарушениях со стороны сердечно-сосудистой системы после тяжелых физических нагрузок в качестве средств, регулирующих нервно-психический статус, спортсменам назначаются седативные (успокаивающие, расслабляющие) препараты для снятия состояния возбуждения, при расстройствах сна, связанных с перевозбуждением; а также в составе комбинированной терапии.

Применяются антигипоксанты, антиоксиданты. При снижении уровня гемоглобина применяют препараты железа.

Фармакологическая защита сердечно-сосудистой системы предполагает и контроль потери эластичности клапанного аппарата сердца и сосудов.

Почти все многообразие сердечной патологии, встречающейся в практике спорта (Н.Д. Граевская, А.Г. Дембо, А.В. Смоленский, авторские наблюдения), связано с ошибками отбора на начальном этапе спортивной карьеры и только усугубляется год от года из-за «мягкотелости» спортивных врачей при УМО, ЭКО и решимости спортсмена и тренера во что бы то ни стало взойти на Олимп.

10. Функции печени

По разнообразию химических процессов и функций, выполняемых клетками печени, этот орган занимает особое положение среди остальных тканей организма.

В первую очередь выделяют биотрансформирующие функции. Через печень проходят два потока крови. Один из них обогащен питательными веществами, поступающими в кровяное русло после их предварительного превращения в ЖКТ в пригодную для транспортировки форму хиломикронов. С этим потоком в печень поступают также лекарственные вещества, пищевые добавки, красители, ароматизаторы, консерванты, присутствующие в пищевых продуктах пестициды, гербициды, остатки кормовых антибиотиков, соли тяжелых металлов и множество других продуктов. Второй поток крови, поступающий в печень из остальных тканей, доставляет как необходимые для организма продукты (белки, липопротеины, остатки питательных веществ), так и отходы метаболизма клеток, выводимые в венозную кровь. Все это многообразие продуктов проходит через печень, где тщательно сортируется и перерабатывается, утилизируя ценные для организма продукты и трансформируя и подготавливая к удалению ненужные или потенциально опасные продукты.

Ведущую роль печень занимает в синтезе ряда белков, производимых только в этом органе и предназначенных для всего организма. Среди таких белков альбумин, глобулины, фибриноген, транс-феррин, церулоплазмин, белки свертываемости крови и т д. Каждый из перечисленных белков играет очень важную роль в организме человека, поэтому нарушение синтеза даже одного из них приводит к развитию патологических состояний. Одновременно с синтезом экспортных белков печень вырабатывает большую группу ферментов и белков, предназначенных для собственных нужд.

Печень обеспечивает потребности всех тканей в продуктах энергетического обмена. При этом выработка энергетических субстратов осуществляется как с учетом валового запроса всего организма, так и индивидуальных потребностей отдельных органов. Например, сердечная и скелетные мышцы предпочитают в качестве основного энергетического субстрата использовать жирные кислоты, а ткани мозга и эритроциты – глюкозу.

С учетом значительных колебаний запросов организма на поставку энергетических субстратов, удовлетворение таких запросов осуществляется с использованием двух независимых систем: 1) комплекса непрерывно функционирующих ферментов, осуществляющих поставку глюкозы и жирных кислот в объемах, удовлетворяющих средние энергетические запросы организма; 2) запасов гликогена (полимерной формы глюкозы), жиров, быстро высвобождающихся из своих депо при повышении энергетического запроса со стороны организма.

Запасы гликогена находятся в печени (от 100 до 380 г) и в скелетных мышцах (не менее 750 г). Гликоген печени расходуется для нужд всего организма, а гликоген мышц может быть использован только собственными тканями. Печень – единственный орган, поставляющий глюкозу всем тканям, в том числе скелетным мышцам. Основное количество глюкозы (до 70%) потребляется тканями мозга.

Поскольку запасы гликогена в печени невелики и при интенсивной работе организма быстро расходуются, для их пополнения включается процесс, называемый глюконеогенезом, осуществляемый только в тканях печени и предназначенный для экстренной выработки ставшей дефицитной глюкозы из очень ценных продуктов – аминокислот.

Там же осуществляется физиологически целесообразный, но энергетически маловыгодный процесс переработкиLa, накапливающегося в мышечной ткани во время тяжелой физической работы, в глюкозу.

Система углеводного обмена играет исключительную роль в поддержании энергетического обмена в организме, по этой причине гепатоциты имеют очень гибкую и легко перестраивающуюся систему ферментов, обеспечивающих бесперебойную выработку углеводов из разнообразных субстратов.

В поддержании энергетического гомеостаза система углеводного обмена скоординированно функционирует с системой обмена жиров, регулируемой также печенью. Печень активно участвует во всех реакциях, связанных с метаболизмом жирных кислот, включая их синтез, окисление, преобразование в триглицерины и фос-фолипиды.

В гепатоцитах активно формируется основная масса липопро-теинов, участвующих в регулировании уровня холестерина в тканях организма. В печени же осуществляются основные этапы обмена холестерина и его переработка в желчные кислоты. При увеличении нагрузки на организм наблюдается активация жирового обмена, обеспечивающего более высокую энергетическую отдачу по сравнению с глюкозой.

Уникальной особенностью печени, отличающей ее от других органов, является наличие в ее клетках полного набора ферментов, осуществляющих обмен всех аминокислот. Эта особенность предопределяет активное участие гепатоцитов в синтезе широкого спектра белков. Синтетические функции печени направлены на удовлетворение потребностей всего организма. Нарушение работы печени по синтезу белков, возникающей при гипоксии тканей в случае значительных и длительных физических нагрузок, обширных кровопотерь, в условиях шокового состояния, способствует развитию в организме прогрессирующей мультиорганной недостаточности, часто не совместимой с жизнью.

Очень важна роль печени в регулировании метаболизма азота в организме. Только в тканях печени происходит синтез мочевины из аминокислот и аммиака для последующего ее выведения через почки.

Масштабность биосинтетических задач, решаемых в тканях печени, и значительная энергоемкость процессов биосинтеза предполагает наличие эффективной системы энергопродуцирования в гепатоцитах. Основной поток макроэргов поступает в гепатоциты в результате работы митохондриальной дыхательной цепи. При возможных нарушениях митохондриального окисления включаются процессы гликолитического расщепления субстрата. Однако их низкая энергетическая эффективность и закисление содержимого цитоплазмы определяют запуск гликолиза лишь в условиях крайней необходимости (Белоусова В. В. и др., 1995).

Следует обратить внимание на одну особенность функционирования митохондриальной дыхательной цепи в гепатоцитах по сравнению с другими тканями. В гепатоцитах более развита система микросомального окисления. Именно по этой причине поступление субстратов в дыхательную цепь гепатоцитов преимущественно осуществляется через комплекс II (сукцинатзависимые субстраты), а не через комплекс I.

Микросомальная система окисления субстрата предназначена для окислительной модификации жирорастворимых продуктов, поступающих в печень. Реакция осуществляется при участии ряда полиферментных комплексов, называемых монооксигеназами. Главную роль в них играет фермент цитохром Р-450, который при участии кислорода осуществляет гидроксилирование липорастворимых веществ, в том числе холестерина.

При этом образуются две группы продуктов, оказывающих негативные воздействия на ткани печени и весь организм в целом.

В первую группу веществ входят спирты, фенолы, альдегиды, эпоксиды и другие соединения, многие из которых ингибируют работу комплекса I дыхательной цепи. Особенно следует отметить возможность их взаимодействия с белками крови с образованием аллергенов или канцерогенов. Хотя гепатоциты в последующих реакциях модификации пытаются перевести все эти продукты в водорастворимую форму, удобную для вывода из организма, некоторая их часть успевает попасть в кровь.

Ко второй группе метаболитов, образуемых в микросомах печени при переработке липорастворимых веществ, относятся АФК. Среди них могут быть выделены высокоактивные радикалы, способные вступать в химическую реакцию с ближайшими соседями, и относительно малореакционные радикалы или другие кислородсодержащие продукты, способные покинуть пределы микросом или даже клетки до их модификации.

Изменение соотношения между прооксидантной системой, генерирующей свободные радикалы, антиоксидантной системой, связывающей данные радикалы, и количеством субстратов окисления ведет к изменению состава мембран и влияет на метаболизм клетки. Высказано предположение (Скулачев В.П., 1989), что все участники окислительных превращений составляют основу регуля-торной системы, организованной по принципу замкнутого круга с отрицательной обратной связью. Система позволяет поддерживать ПОЛ на определенном уровне.

Длительное отклонение системы от состояния равновесия приводит к развитию патологических состояний. Экзогенное введение в систему любых входящих в нее компонентов на время смещает равновесие, но не нарушает связей, существующих между звеньями данной системы.

О серьезных последствиях нарушения баланса между прооксидантной и антиоксидантной системами, в том числе на энергетику клеток, свидетельствуют эксперименты. При значительных нарушениях энергопродуцирующих функций наступает гибель клеток. Гепатоциты особенно чувствительны к повреждению их энергетики. Это подтверждается результатами клинических наблюдений, когда у больных, находящихся в шоковом состоянии, снижение энергопродуцирующих функций печени является одной из наиболее частых причин летальных исходов.

Для тканей печени характерны состояния циркуляторной (потери крови, анемии, нарушения микроциркуляции, лизис эритроцитов) и гемической (отравления дыхательными ядами, повреждение митохондрий) гипоксии. Это связано как с особенностями внутриклеточного метаболизма, так и с природой перерабатываемых гепатоцитами продуктов.

Увеличение в продуктах питания различных наполнителей, красителей, ароматизаторов, консервантов увеличивает нагрузку на печень. Особенно серьезна проблема повышенного содержания в овощных культурах нитратов, широко используемых в качестве удобрений для повышения продуктивности культур. Нитраты и продукты их модификации способствуют переходу гемоглобина в неактивный метгемоглобин, ингибируют работу дыхательной цепи, образуют канцерогенные нитрозосоединения, ответственные за возникновение рака желудка и толстой кишки.

Назад Дальше