Фундаментальная радиохимия - Бетенеков Николай 4 стр.


1Kи= 3,7 • 1010 Бк. (1.12)

Физический смысл постоянной радиоактивного распада λ, введенной Резерфордом и Содди, можно прояснить следующим образом. Положим в соотношениях (1.8) A/A0 = N/N0 = I/I0 = 0,5. Время, протекшее c момента произвольно выбранного начала отсчета (при t = 0 A = A0, N = N0, I = I0) до момента достижения указанного состояния, называется периодом полураспада и обозначается: t(A/A0 = N/N0 = I/I0 = 1/2) = T1/2

Отсюда следует:

.

Или, что то же самое:

.

После логарифмирования (в системе натуральных логарифмов) обеих частей последнего равенства получаем соотношение: ln2 = λT1/2, откуда следует:

λ = ln2/T1/2. (1.13)

Если положить в общем случае A/A0 = N/N0 = I/Io = 1/n (рассматривать уменьшение начальной активности и начального числа ядер не в два раза, а в n раз), то λ = lnN/T1/n. Допустим, что n = e (основание натуральных логарифмов). Тогда очевидно, что

λ = lne/T1/e= 1/T1/e , то есть (1.14)

постоянная радиоактивного распада равна обратному значению отрезка времени, по истечении которого активность радионуклида и число нераспавшихся ядер уменьшаются в e раз. Это время на языке физической статистики называют средним временем жизни атома радиоактивного вещества.

Среднее время жизни равно сумме времен существования всех атомов, деленной на их начальное число (No при t =0). Поскольку N является очень большим числом, то эту сумму можно заменить эквивалентным интегралом, полагая N непрерывной функцией от t (как и было принято выше).

Число атомов, распадающихся в промежуток времени между t и t + dt, равно λNdtNoe – λtdt. Эти атомы имеют продолжительность жизни t. Следовательно, общая продолжительность жизни всех атомов данной группы будет равна t λ N0 eλtdt.

Суммарную продолжительность жизни (τ) всех N0 атомов можно получить, проинтегрировав полученное выражение по t в пределах от 0 до ∞

и поделив его на N0:

, (1.15)

откуда следует, что τ = T1/e = 1/λ .

Таким образом, используя соотношения (1.10), (1.13) – (1.15), можно разносторонне интерпретировать физический смысл λ :

(1.16)

Из последнего равенства (λ = A/N) следует, что λ можно истолковать как меру, определяющую число актов распада, в единицу времени приходящееся на один атом (атомное ядро) в среднем. Эта мера и есть вероятность распада в единицу времени в собрании N атомов (ядер) в расчете на один атом (ядро).

Отсюда видно, что размерность величины λ – обратные секунды (с – 1). Табулируют значения констант радиоактивного распада обычно в этих единицах, но гораздо чаще прибегают к понятию «период полураспада» как к интуитивно более понятной величине. При этом выражают его в привычных и обозримых единицах, – от долей секунды до нескольких миллиардов и более лет.

Статистическое обоснование закона радиоактивного распада было предложено Э. Фон Швейдлером в 1905 году. Как только что было выявлено, каждое радиоактивное ядро имеет определенную вероятность распада, а константа λ и есть величина вероятности этого события. Можно показать, что из такого толкования радиоактивности непосредственно следует эмпирически установленный Резерфордом и Содди экспоненциальный закон распада.

Допустим, что вероятность испытать распад в течение некоторого промежутка времени Δt для всех ядер данного радионуклида равна величине wΔt, которая пропорциональна только этому промежутку времени Δt, т.е. wΔt = kΔt, где k – коэффициент пропорциональности. Вероятность же пережить этот промежуток времени (т.е. не распасться), как вероятность противоположного события, будет равна 1 – wΔt = 1 – kΔt. Вероятность

пережить некоторый больший промежуток времени t1 = hΔt, где h – произвольное число, будет уже вероятностью сложного события (наступление h раз события, вероятность которого равна 1 – kΔt). Эта вероятность в соответствии с теоремой об умножении вероятности выразится следующим образом: wt1 = (1 – wΔt)h = (1 – kΔt)h.

Прологарифмируем это равенство: lnwt1 = hln(1 – kΔt).

Пусть при постоянном значении t1 = hΔt Δt стремится к 0. Тогда, полагая слагаемое kΔt величиной, пренебрежимо малой по сравнению с единицей, разлагая в ряд ln(1–kΔt) по малому параметру и ограничиваясь линейным членом разложения, получим:

lnwt1 = – hkΔt = – kt1.

Потенцируя это выражение и полагая, что в силу произвольности выбора отрезка времени t1 индекс «1» не имеет значения, получим:

wt = e – kt.

С другой стороны, вероятность атому (ядру) не распасться в течение времени t можно оценить как отношение числа «благоприятных» исходов к их общему числу (в течение времени t каждому атому можно поставить в соответствие только два исхода: он либо распадется, либо не распадется; последний исход и назван здесь «благоприятным»).

Иными словами, если в момент времени, выбранный как начальный (t = 0), существовало N0 атомов радионуклида, то математическое ожидание числа атомов или среднее число атомов, не распавшихся за время t, будет равно:

N = wt No= Nekt, (1.17)

а это и есть одно из выражений закона радиоактивного распада (1.9); кроме того, становится очевидным, что коэффициент пропорциональности k, связывающий вероятность ядру испытать распад в течение промежутка времени Δt с его величиной, совпадает с константой радиоактивного распада λ как по статистическому смыслу, так и вследствие изоморфизма уравнений (1.9) и (1.17).

Таким образом, k = wΔtt≡ λ ≡ A/N, что обсуждено выше (1.16).

1.3.5. Связь активности с массой

В химии гравиметрия («весовой анализ») является арбитражным аналитическим методом. Какими бы ни были методы анализа, применяемые в настоящее время (сейчас получили распространение физико-химические и физические методы), все они так или иначе, применительно к задачам количественного анализа, сводятся к необходимости использовать некоторые исходные вещества в качестве эталонов. Последние могут быть изготовлены с использованием, в конечном итоге, аналитических весов.

Но в ядерной физике и радиохимии гравиметрический метод совершенно не распространен главным образом вследствие того, что в подавляющем числе радиоаналитических задач (и, тем более, в радиоэкологии) имеют дело с такими массами радиоактивных веществ, которые находятся за пределом чувствительности даже наилучших весов. Тем не менее помимо установления абсолютной активности радионуклидов, что выполняется инструментально, бывает необходимо знать и их массу (концентрацию). Это достигается элементарным расчетом на основе соотношения (1.10):

где m – масса радионуклида (г), M – молярная масса радионуклида (г/моль);

NA = 6,022045•1023 моль-1 – постоянная Авогадро.

Отсюда следует:

. (1.17)

(Здесь активность выражается в беккерелях, а период полураспада в секундах).

По этой формуле можно рассчитать массу, например, одного кюри любого радионуклида. Так, 1Kи 238 U (T1/2 = 4,5•109 лет) имеет массу около трех тонн, 1 Kи226Ra (T1/2= 1600 лет) – 1 г (это так и должно быть, т.к. один грамм именно этого изотопа радия в свое время был выбран за эталон одного кюри).

В то же время масса короткоживущих радионуклидов, имеющих T1/2 порядка нескольких лет или суток (не говоря уж о тех, период полураспада которых исчисляется секундами или долями секунды), в аналитическом смысле может оказаться настолько незначительной, эфемерной, почти нереальной, что ей нельзя будет приписать проявление каких бы то ни было макроскопических термодинамически фиксируемых свойств. Иными словами, химические (в общем случае термодинамические) характеристики любой фазы, в которую включается (или ею утрачивается, отдается) радиоактивный микрокомпонент, не могут измениться сколько-нибудь заметным образом, т.к. уровень концентрации этой примеси (выражаемый в процентах или в мольных долях) не более значим, чем уровень любых других практически неустранимых загрязнений, присутствующих даже в самых чистых химических препаратах.

Вот такие массы веществ и соответствующие им концентрации в радиохимической литературе получили название «невесомые количества», «микроколичества», или даже «ультрамикроколичества». А само вещество в таких количествах обычно называют микрокомпонентом.

С явлением радиоактивности (точнее – с экспоненциальным характером ее проявления) связан распространенный паралогизм – убежденность некоторых людей в том, что по истечении десяти периодов полураспада любой радионуклид практически распадается полностью.

Проанализируем справедливость этого утверждения. В соответствии с (1.11): N/N0 = 2 – n = 2–10 = 1/1024. При этом распалось (N0 – N) атомов:

Nрасп = N0 – N = N0 (1–1/1024).

Последнее выражение дает основание для высказывания двух суждений.

1) С одной стороны, 1–1/1024 ≈ 1, т.е. NраспN0, что соответствует итогу «радионуклид практически распался весь». Казалось бы, это утверждение в какой-то степени приемлемо, т.к. равенство Nрасп N0 выполняется с погрешностью (погрешность вычисления) менее 0,1%, о чем многие проектировщики могут только мечтать.

2) Но, с другой стороны, из того факта, что значение некоторой физической величины уменьшилось на три порядка, вовсе не вытекает следствие, что данную величину можно приравнять нулю. Это всего лишь «психологический софизм», поскольку здесь соединились два независимых сравнения, причем одно в процессе рассуждений подменяется другим.

В первом случае признается имеющим смысл фраза, что «0,00098 гораздо меньше (пренебрежимо меньше) единицы». Но и во втором случае оставшееся число атомов, N, тоже необходимо сравнить с каким-то другим эталоном, репером, нормой и т.п., но отнюдь не с единицей.

Скорей всего N и A, которые «остались» (Nост и Aост) после истечения 10 T1/2, нужно сравнивать с существующими нормами или потребностями. Если оценивается вредная сторона носителя радиоактивности, то сравнение должно происходить, например, с санитарными нормами (Aн). Здесь возможны различные ситуации:

Aн > Aост и даже Aн >> Aост, либо наоборот Aн<Aост, Aн << Aост (обычно в подобных сравнениях фигурируют удельные величины). Понятно, что житейские и юридические выводы, следующие отсюда, будут абсолютно различными. При этом совсем не исключено, что соотношение Aн << Aост может оставаться в силе не только по истечению 10 T1/2, но и после прошествия гораздо большего отрезка времени.

Таким образом, психологическому аспекту экспоненциальной зависимости редко отдают должное, она таит в себе ряд паралогизмов и не вписывается в интуицию человека. Эта зависимость наглядна только при сравнении ее с некоторым соответствующим пределом (нормой, репером, эталоном и т.п.).

У закона радиоактивного распада как у зависимости экспоненциального характера есть еще одна особенность, касающаяся временного поведения долгоживущих радионуклидов. В связи с этим рассмотрим один характерный пример.

Период полураспада урана-238 равен 4,5·109 лет. Какова убыль его активности вследствие распада за конкретный, но незначительный по сравнению с периодом полураспада интервал времени, например, за миллион лет?

Эта убыль, выражаемая в долях единицы, отнесенная к начальному значению активности, равна:

Положим t = 106 лет и преобразуем равенство следующим образом:

Обоснованно полагая δ величиной очень малой в сравнении с единицей, ограничимся первым линейным членом разложения логарифмической функции в ряд: ln(1 – δ) ≈ – δ . Тогда δ = (0,692•106/4,5·109) = 1,5 · 10–4 или 0,015%. Таким образом, активность урана-238 как функция времени может быть независимо рассмотрена в двух временных масштабах.

1) В геохронологическом масштабе времени (отрезки времени, сопоставимые, например, с возрастом Земли, признаваемым в космогонии) этот радионуклид значимо изменял свою активность. Так, если возраст Земли в настоящее время оценивается величиной порядка нескольких миллиардов лет, то с момента возникновения нашей планеты как тела Солнечной системы до наших дней активность содержащегося в геосфере урана-238 уменьшилась практически вдвое.

2) В технологическом (антропном) масштабе (отрезки времени, сопоставимые с интервалом, протекшим с момента возникновения Homo Sapiens, и гораздо меньшие), как только что было показано выше, активность этого радионуклида (и, естественно, всех других, обладающих такими же значительными периодами полураспада) может быть рассматриваема как практически независимая от времени:

. Это, разумеется, парадоксальный вывод, сбивший с толку даже Фредерика Содди, но он вполне объясним, если не забывать об иерархии масштабов времени, всегда принимаемой во внимание в естествознании.

Иными словами, обсуждение зависимости активности долгоживущих радионуклидов от времени имеет смысл и сопряжено с практически полезными расчетами только тогда, когда четко определен масштаб времени, в соответствии с которым это обсуждение проводится.

Назад Дальше