Любая наука (физика уж точно) стремится в конечном итоге свести то, что она наблюдает в окружающей реальности, к математическому описанию. Специалисты по космологии, физике элементарных частиц и аналогичным дисциплинам радуются как дети, когда им удается что-нибудь измерить или выразить количественно, а затем отыскать между этими количествами зависимость. Мысль о том, что вселенная в своей основе математична, имеет древние корни и восходит еще к пифагорейцам, а то и к более раннему периоду. Еще Галилей видел мир как великую книгу, написанную на языке математики, а много позже, в 1960 году, венгерско-американский физик и математик Юджин Вигнер написал статью под названием Непостижимая эффективность математики в естественных науках.
В природе мы не сталкиваемся с числами непосредственно, поэтому не сразу очевидно, что математика во всем, что нас окружает. Зато мы видим геометрические формы почти точные сферы планет и звезд, криволинейные траектории брошенных предметов и движущихся по орбите объектов, симметрию снежинок и многое другое, а их уже можно описать с помощью числовых соотношений. А кроме них есть еще закономерности, которые также можно перевести на язык математики, в работе электрического и магнитного поля, во вращении галактик, в поведении электронов в атомах. Эти закономерности и описывающие их уравнения обосновывают отдельные события и явления и представляют собой глубинные, неподвластные времени истины, лежащие в основе постоянно меняющегося сложного и многогранного мира, в котором мы все существуем. Немецкий физик Генрих Герц, первым убедительно доказавший существование электромагнитных волн, писал: Невозможно избавиться от ощущения, что математические формулы существуют независимо от нас и обладают собственным разумом, что они мудрее нас, мудрее даже тех, кто их открыл, и что мы извлекаем из них больше, чем первоначально было заложено.
Несомненно, что современная наука имеет под собой прочный математический фундамент. Но это не обязательно означает, что сама реальность математична по своей сути. Еще со времен Галилея наука разделяла субъективное и объективное, или поддающееся измерению, и сосредоточивалась именно на последнем. Ученые делают все возможное, чтобы исключить любые факторы, относящиеся к наблюдателю, и принимать во внимание только то, что, по их мнению, находится за пределами помех, вносимых нашим мозгом и органами чувств. Весь путь развития, пройденный современной наукой, практически гарантирует, что в ее основе будет лежать математика. Но тогда за бортом остается множество областей, не так легко поддающихся научному анализу. Наиболее очевидная из них сознание. Может быть, когда-нибудь мы построим добротную, всеобъемлющую модель работы мозга, разобравшись во всех нюансах функционирования памяти, обработки зрительной информации и многого другого. Но вопрос о том, для чего нам дан еще и внутренний опыт, ощущение того, каково это быть, остается (и, возможно, всегда останется) за пределами традиционной науки, а значит, и математики.
Для чего в процессе эволюции человеческий мозг развил в себе такие выдающиеся способности к совершенно ненужной ему для выживания математике?
С одной стороны, есть сторонники платонизма, считающие математику уже существующей территорией, которая лишь ждет, пока мы ее исследуем. С другой стороны, есть те, кто утверждает, что мы изобретаем математику постепенно, по мере возникновения необходимости в ней. И у той и у другой точки зрения есть слабые стороны. Платоники не в силах толком объяснить, где именно вне физической вселенной и человеческого разума существуют такие вещи, как число пи. А их оппоненты не могут отрицать тот факт, что планеты, например, будут вращаться вокруг Солнца по эллиптической орбите независимо от наших математических расчетов. Третья философская школа занимает промежуточную позицию: ее представители считают, что математика далеко не так эффективно описывает реальный мир, как это иногда пытаются представить. Да, уравнения помогают нам направить космический аппарат на Луну или Марс, спроектировать новый самолет или предсказать погоду на несколько дней вперед. Но эти уравнения всего-навсего приближение той реальности, которую они призваны описывать; к тому же они применимы лишь к малой части явлений, происходящих вокруг нас. Превознося успехи математики, сказал бы реалист, мы умаляем значение огромного количества явлений, которые слишком сложны или плохо изучены для того, чтобы укладываться в математическую форму, либо по самой своей природе не поддаются такому анализу.
А может быть, на самом деле вселенная по своей природе не математична? В конце концов, ни в космосе, ни в содержащихся в нем объектах нет ничего явно математического. Мы, люди, пытаемся дать наблюдаемым нами явлениям рациональное объяснение, упростить их, чтобы смоделировать какие-то аспекты устройства вселенной. При этом математика оказывает нам неоценимую помощь в познании этой самой вселенной. Но это не обязательно означает, что математическая наука нечто большее, чем инструмент, созданный нами для собственного удобства. Однако же, если математики не было во вселенной изначально, как получилось, что мы смогли изобрести ее и применить для такой цели?
Всю математику можно грубо разделить на две области прикладную и чистую. Чистая математика это наука ради науки. Прикладные математики применяют свои знания для решения практических задач. Но зачастую достижения чистой математики, не имеющие, казалось бы, никакого практического применения, позднее оказываются на удивление полезными для ученых-практиков и инженеров. В 1843 году ирландский математик Уильям Гамильтон сформулировал идею кватернионов обобщений обычных чисел на четырехмерное пространство. На тот момент они не представляли никакого практического интереса, но спустя больше ста лет нашли широкое применение в робототехнике, компьютерной графике и видеоиграх. Задача о плотной упаковке сфер в трехмерном пространстве, которую впервые попытался решить Иоганн Кеплер в 1611 году, используется для того, чтобы более эффективно передавать информацию по шумным каналам связи. Исследования в теории чисел самой чистой математической дисциплине, которую считали почти не имеющей практической ценности, привели к важным открытиям в области разработки криптостойких шифров. А новая геометрия Бернхарда Римана, изучавшая искривленные поверхности, более пятидесяти лет спустя оказалась идеальной основой для создания общей теории относительности Эйнштейна новой теории тяготения.
В июле 1915 года один из величайших ученых всех времен Альберт Эйнштейн посетил Гёттингенский университет, где произошла его встреча с одним из самых выдающихся математиков той эпохи Давидом Гильбертом. А в декабре следующего года оба ученых почти одновременно опубликовали уравнения, описывающие гравитационное поле в эйнштейновской общей теории относительности. Но если для Эйнштейна сами уравнения были целью его работы, то Гильберт надеялся, что они станут шагом на пути к осуществлению еще более грандиозного замысла. Им двигало страстное желание найти фундаментальные принципы, или аксиомы, лежащие в основе всей математики. Для этого, по мнению Гильберта, нужно было в том числе сформулировать минимальный набор аксиом, из которых можно было бы вывести уравнения не только общей теории относительности Эйнштейна, но и любой другой физической теории. Курт Гёдель своими теоремами о неполноте подорвал веру в то, что математика способна дать ответы на все вопросы. И до сей поры остается неясным, насколько математичен мир, в котором мы живем. Или же это только видимость?
Целые разделы математики, возможно, так никогда и не найдут практического применения, а будут лишь приводить к открытию все новых направлений фундаментальных исследований. С другой стороны, как знать, может быть, законы чистой математики каким-то неожиданным образом действуют в физической вселенной если и не в нашей, то в каких-нибудь других вселенных, составляющих, по подозрению космологов, мультивселенную непостижимого масштаба. Быть может, все, что истинно и справедливо с точки зрения математики, где-то, когда-то, каким-то образом представлено в той реальности, в которую мы заключены. Ну а пока мы отправимся в увлекательнейшее путешествие по просторам познания, исследуя новые рубежи чисел, пространства и человеческого разума.
В последующих главах мы с вами попытаемся глубже разобраться в некоторых вопросах, с одной стороны, необычных и поразительных, а с другой имеющих самое непосредственное отношение к окружающему нас миру. Да, кое-что в математике может показаться заумным, надуманным или даже бессмысленным, этакой странной и запутанной игрой воображения. Но в своей основе математика наука практичная, уходящая корнями в торговлю, сельское хозяйство и архитектуру. И хотя в своем развитии она и претерпела превращения, которые даже в голову не могли прийти нашим предкам, все же по своей сути она остается тесно связанной с повседневной жизнью.
Глава 2. Как увидеть четырехмерное пространство
Одна из самых странных особенностей теории струн в том, что она требует существования большего количества пространственных измерений, чем те три, которые мы непосредственно наблюдаем в окружающем нас мире. Напоминает научную фантастику, и тем не менее это неоспоримый факт, вытекающий из математики теории струн.
Мы живем в мире трех измерений вверх-вниз, вправо-влево и вперед-назад или любые другие три направления, расположенные под прямыми углами друг к другу. Можно легко представить себе что-нибудь одномерное, например прямую линию. То же и с двумерным объектом скажем, квадрат, нарисованный на листе бумаги. Но как вообще можно научиться видеть помимо знакомых нам измерений еще одно? Где находится дополнительная ось, расположенная перпендикулярно к тем, что мы уже знаем?
Эти вопросы могут показаться чисто умозрительными. Ведь в нашем мире всего три измерения так зачем ломать голову и переживать из-за четвертого, пятого и так далее? Дело в том, что дополнительные измерения могут понадобиться ученым, чтобы объяснить, что происходит на субатомном уровне. В этих дополнительных измерениях, возможно, кроется ключ к пониманию великого закона вещества и энергии. А на более практическом уровне четырехмерное зрение могло бы открыть огромные возможности в медицине и образовании.
Иногда четвертое измерение толкуют не просто как дополнительную ось в пространстве. В конце концов, измерять можно не только пространство. В физике, например, основные измерения, образующие кирпичики, из которых строятся другие величины, это длина, масса, время и электрический заряд. В других контекстах физики зачастую говорят о трех пространственных измерениях и одном временно́м, особенно с тех пор, как Альберт Эйнштейн доказал, что в нашем мире они всегда связаны в единое целое под названием пространство-время. Но и до теории относительности люди строили догадки о возможности перемещаться вперед и назад во временно́м измерении, подобно тому как мы можем свободно передвигаться в пространстве. В опубликованном в 1895 году романе Машина времени Герберт Уэллс объясняет, например, почему не может существовать вневременный куб. Наблюдаемый нами мгновение за мгновением куб всего лишь проекция четырехмерного тела, имеющего длину, ширину, высоту и продолжительность существования. Единственное различие между Временем и любым из трех пространственных измерений, говорит Путешественник во Времени, заключается в том, что наше сознание движется по нему.
Идея четвертого измерения пространства вызывала живейший интерес и в Викторианскую эпоху, причем не только у математиков. Последователи еще одного поголовного увлечения того времени спиритуализма также взяли ее на вооружение. В конце XIX века громкие заявления медиумов и перспектива общения с умершими привлекали многих людей, в числе которых были такие знаменитости, как Артур Конан Дойл, Элизабет Барретт Браунинг и Уильям Крукс. А вдруг, задумывались люди, загробная жизнь существует в четвертом измерении, параллельном или пересекающимся с нашим, и духи усопших могут свободно переходить в наш материальный мир и обратно?
Из-за неспособности представить себе, как могут выглядеть тела в более многомерном мире, у нас возникает соблазн считать четвертое измерение чем-то таинственным, находящимся за гранью известного нам мира. А вот у математиков работа с четырехмерными объектами и пространствами не вызывает никаких затруднений для того чтобы описать их свойства, математикам вовсе нет необходимости представлять, как те выглядят. Эти свойства можно рассчитать с помощью алгебры и математического анализа, не прибегая ни к каким многомерным умственным ухищрениям. Возьмем, к примеру, окружность. Окружность это кривая, состоящая из всех точек на плоскости, находящихся на одинаковом расстоянии (называемом радиусом) от заданной точки (центра). Как и у прямой линии, у окружности нет ни ширины, ни высоты только длина, а потому окружность одномерна. Представьте, что вы находитесь на линии и ограничены ее пределами. Вы сможете передвигаться только вдоль этой линии, либо в одну сторону, либо в противоположную. То же и с окружностью. Хоть она и существует в пространстве, имеющем как минимум два измерения, но, если вы расположены на ней и ею же ограничены, свободы перемещения у вас не больше, чем на прямой: только туда и обратно по окружности, то есть фактически одно измерение.
Нематематики иногда путают окружность с кругом. Но для математика круг это совсем другой объект, включающий в себя и то, что находится в пределах окружности. Окружность это одномерная фигура, которую можно вложить в двумерный объект, плоскость (упрощенно это можно изобразить, нарисовав окружность тонким карандашом на листе бумаги). Длина окружности равна 2πr, где r ее радиус; а площадь поверхности, ограниченной окружностью, вычисляется по формуле πr2. Перейдя на одно измерение выше, получаем сферу, состоящую из всех точек, лежащих на одинаковом расстоянии от заданной, но уже в трехмерном пространстве. И опять-таки человек, далекий от математики, может спутать сферу (двумерную поверхность) с шаром, который включает в себя еще и все точки, находящиеся внутри этой поверхности. Для математика же это совершенно разные вещи. Сфера двумерный объект, который может быть вложен в трехмерное пространство. Площадь ее поверхности равна 4πr2, а ограниченный ею объем 4/3 πr3. По аналогии с обычной, двумерной, сферой математики, обобщая, называют окружность одномерной сферой, а сферы более высоких измерений именуют гиперсферами, указывая их размерность. Простейшая (трехмерная) гиперсфера это трехмерный объект, вложенный в четырехмерное пространство. Вообразить себе, как она выглядит, мы не способны, но понять, что она из себя представляет, благодаря аналогии можем. Точно так же как окружность это кривая линия, а обычная, двумерная, сфера искривленная поверхность, трехмерная гиперсфера это искривленный объем. С помощью несложного математического расчета можно доказать, что этот искривленный объем описывается формулой 2π2r3. Это эквивалент площади поверхности обычной сферы, только применительно к сфере трехмерной. Эту величину также называют трехмерной гиперплощадью, или площадью поверхности трехмерной гиперсферы. Внутри трехмерной гиперсферы заключено четырехмерное пространство, гиперобъем которого равен 1/2 π2r4. Доказать истинность этих фактов о трехмерной сфере не намного сложнее, чем доказать то же для окружности или обычной сферы, и для этого вовсе не обязательно представлять себе, как трехмерная сфера выглядит.
Так же трудно нам представить, как может выглядеть четырехмерный куб, или тессеракт (хотя, как мы увидим позже, его вполне можно попытаться изобразить в двух или трех измерениях). И тем не менее совсем не сложно описать переход от квадрата к кубу, а от него к тессеракту: у квадрата 4 вершины (угла) и 4 ребра (стороны); у куба 8 вершин, 12 ребер и 6 граней; у тессеракта 16 вершин, 32 ребра, 24 грани и 8 ячеек (трехмерных эквивалентов граней), состоящих из кубов. Вот именно этот последний факт и сводит к нулю все наши попытки наглядно представить себе тессеракт: восемь его ячеек расположены таким образом, что ограничивают собой четырехмерное пространство, точно так же как внутри шести квадратных граней куба заключено трехмерное пространство.
Обычно, чтобы получить хоть какое-то представление о четвертом измерении, имеет смысл провести аналогию с привычным нам третьим. Например, если задаться вопросом, как бы выглядела трехмерная гиперсфера (лежащая в четырехмерном пространстве), если бы она прошла через наше пространство, полезно рассмотреть, что происходит, когда обычная сфера проходит через плоскость. Предположим, что эту плоскость населяют двумерные существа. Глядя вдоль поверхности своего плоского мира а больше ничего они и не могут, ведь объема для них не существует, они видят лишь точки или линии разной длины, которые умеют интерпретировать как двумерные фигуры. В момент соприкосновения нашей объемной сферы с их двумерным пространством они увидят ее как точку, которая постепенно вырастает в окружность, достигает максимального диаметра, равного диаметру сферы, а потом снова сжимается до точки и исчезает, когда сфера полностью проходит через плоскость. Точно так же, если трехмерная гиперсфера пересечет наше пространство, мы увидим ее как точку, которая раздувается, словно пузырь, до обычной сферы максимального диаметра, а потом сжимается и наконец исчезает. Истинную природу трехмерной гиперсферы, ее дополнительное измерение, мы увидеть не сможем, но вот ее таинственное появление, рост и исчезновение заставят нас немало удивиться.