Четырехмерные существа, попавшие в наш мир, обладали бы, с нашей точки зрения, поистине магическими способностями. Они запросто могли бы, например, взяв левый ботинок, перевернуть его в четвертом измерении и превратить в правый. Если это кажется непонятным, представьте себе двумерный ботинок нечто вроде бесконечно тонкой подошвы, имеющей форму правой или левой ступни. Вырезаем его из бумаги, поднимаем, переворачиваем и кладем на место. И пожалуйста был правый ботинок, стал левый! Двумерное существо такой трюк поверг бы в полное изумление, а нам, вооруженным третьим измерением, это проще простого.
В принципе, четырехмерному существу ничего не стоило бы перевернуть в четвертом измерении и целого (трехмерного) человека. Впрочем, отсутствие прецедентов, когда в человеке все правое и левое вдруг поменялось бы местами, дает основания полагать, что в реальности такого не происходило. В рассказе История Платтнера Герберт Уэллс описывает удивительный случай, происшедший со школьным учителем Готфридом Платтнером, который после взрыва в кабинете химии исчезает на девять дней. Вернувшись, он представляет собой зеркальное отражение предыдущего себя, но его рассказ о том, что произошло во время его отсутствия, встречают с недоверием. Если человека действительно перевернуть таким образом в четвертом измерении, это мало того что вызовет у него шок при виде собственного отражения в зеркале (лица людей на удивление асимметричны), но и не лучшим образом отразится на здоровье. Многие важнейшие вещества в нашем организме, в том числе глюкоза и большинство аминокислот, имеют определенную ориентацию: например, молекулы ДНК, имеющие форму двойной спирали, всегда закручены как винт с правой резьбой. Если у всех них поменять ориентацию, мы умрем от истощения ведь в таком преображенном виде многие из необходимых питательных веществ растительного и животного происхождения наш организм просто не сможет усвоить.
Математики начали проявлять интерес к четвертому пространственному измерению в первой половине XIX века, после работ немецкого ученого Августа Фердинанда Мёбиуса. В первую очередь его помнят как изобретателя объекта, позже названного в его честь, ленты Мёбиуса и как пионера топологии. Он же первым пришел к выводу, что в четвертом измерении трехмерный объект можно повернуть так, чтобы получить его зеркальное изображение. Во второй половине XIX века среди математиков, изучавших новую область многомерную геометрию, выделялись трое ученых: швейцарец Людвиг Шлефли, англичанин Артур Кэли и немец Бернхард Риман.
Свой главный труд Theorie der Vielfachen Kontinuität (Теория многократной континуальности) Шлефли начал со слов: Настоящий трактат это попытка обосновать и выработать новую ветвь анализа, которая, как бы являясь аналитической геометрией n измерений, содержит таковую для плоскости и пространства в качестве частных случаев для n = 2, 3. Далее он описал многомерные аналоги многоугольников и многогранников, назвав их полисхемами. Сейчас для них используют термин политопы, придуманный немецким математиком Рейнгольдом Хоппе и введенный в английский язык Алисией Буль Стотт, дочерью английского математика и логика, автора булевой алгебры Джорджа Буля и Мэри Эверест Буль, математика-самоучки и автора книг о математике.
Также Шлефли принадлежит заслуга открытия многомерных аналогов платоновых тел. Под платоновым телом понимают выпуклый многогранник (то есть все углы у него направлены наружу), каждая из граней которого правильный многоугольник, а в каждом из углов сходится одинаковое количество граней. Всего таких тел пять: куб, тетраэдр, октаэдр, (12-гранный) додекаэдр и (20-гранный) икосаэдр. Четырехмерные эквиваленты платоновых тел это выпуклые правильные четырехмерные политопы. Всего Шлефли открыл шесть таких четырехмерных политопов и дал им названия по количеству составляющих их ячеек. Простейший, пятиячейник, состоит из 5 тетраэдрических ячеек, 10 треугольных граней, 10 ребер и 5 вершин и является аналогом тетраэдра. Кроме него есть восьмиячейник, или тессеракт, и двойственный ему шестнадцатиячейник, который получается, если заменить ячейки тессеракта вершинами, грани ребрами, а ребра гранями. Шестнадцатиячейник имеет 16 тетраэдрических ячеек, 32 треугольные грани, 24 ребра и 8 вершин и представляет собой четырехмерный аналог октаэдра. Еще два четырехмерных политопа стодвадцатиячейник, аналог додекаэдра, и шестисотячейник, аналог икосаэдра. И наконец, есть двадцатичетырехячейник с 24 октаэдрическими ячейками, у которого нет аналога в трехмерном пространстве. Любопытно, что, как установил Шлефли, количество выпуклых правильных политопов во всех более высоких измерениях одинаково в каждом по три.
Благодаря работам Кэли, Римана и других ученых, математики научились выполнять сложные алгебраические вычисления для четырехмерного пространства и создали новые, многомерные геометрии, выходившие за рамки правил, установленных Евклидом. Но вот что им все равно никак не удалось, так это начать видеть в четырех измерениях. А возможно ли это вообще? Этот вопрос не давал покоя британскому математику, преподавателю и автору научно-фантастических романов Чарльзу Говарду Хинтону. Ему не было и тридцати, когда он начал преподавать в частных английских школах: сначала в Челтнемском колледже (графство Глостершир), а потом в Школе Аппингем (графство Ратленд), где его коллегой (и главным тамошним преподавателем математики) был Говард Кэндлер, друг Эдвина Эбботта. Именно тогда, в 1884 году, Эбботт опубликовал свой ставший теперь классическим сатирический роман Флатландия: роман о четвертом измерении. А четырьмя годами раньше Хинтон написал свою статью об альтернативных пространствах под названием Что такое четвертое измерение?, в которой выдвинул идею, что частицы, движущиеся в трехмерном пространстве, могут быть представлены как последовательные поперечные сечения прямых и кривых линий, существующих в четвертом измерении. Возможно, и мы сами в реальности четырехмерные существа, наши же последовательные состояния соответствуют прохождению их через трехмерное пространство, которым ограничено наше сознание. Об отношениях между Эбботтом и Хинтоном известно немного, но о работе друг друга они точно знали (и упоминали это в своих трудах) и какой-то контакт между ними был, пусть даже опосредованный через общего друга и коллегу. Кэндлер наверняка обсуждал с Эбботтом молодого преподавателя из Аппингема, так открыто говорившего и писавшего об иных измерениях.
Обложка первого издания Флатландии Эдвина Эбботта.
Хинтон был, мягко говоря, чужд условностям. В то время, когда он преподавал в Англии, он женился на Мэри Эллен Буль, дочери вышеупомянутых Мэри Эверест Буль (а она сама была племянницей Джорджа Эвереста, в честь которого названа высочайшая гора мира) и Джорджа Буля. К сожалению, через три года после заключения брака он тайно обвенчался с другой женщиной, Мод Флоренс. С ней он познакомился, когда работал в Челтнемском колледже, она родила ему двойню. Не исключено, что на поведение Чарльза повлияли взгляды его отца, хирурга Джеймса Хилтона, который возглавлял секту, практикующую полигамию и свободную любовь. Так или иначе, Хинтона судили в Олд-Бейли и признали виновным в двоеженстве. Несколько дней ему пришлось провести в тюрьме. После этого он несколько лет учительствовал в Японии, куда бежал вместе с (первой) семьей, а позже переехал в США, где получил место преподавателя математики в Принстонском университете. Там в 1897 году он сконструировал пушку, которая с помощью пороховых зарядов выстреливала бейсбольные мячи со скоростью от 40 до 70 миль в час. Газета The New York Times в выпуске от 12 марта того года описывала устройство как тяжелое орудие со стволом длиной около двух с половиной футов, имеющее в задней части ствола приспособление для присоединения ружья. Главным достоинством пушки была возможность подачи крученых мячей, которая достигалась посредством двух изогнутых стержней, вставлявшихся в ствол. Несколько сезонов команда университета периодически пользовалась пушкой для тренировок, но в конце концов ее сочли слишком опасной. Неясно, стали ли причиненные орудием травмы одной из причин увольнения Хинтона из Принстона. Если так, это не помешало ему вернуться к своему изобретению в Миннесотском университете, где он недолго преподавал в 1900 году, до того как получил должность в Военно-морской обсерватории США в Вашингтоне.
Увлечение Хинтона четвертым измерением началось еще во время преподавания в Англии, когда многие из писавших об этом предполагали наличие связи между высшими измерениями и спиритуализмом. В 1878 году профессор астрономии Лейпцигского университета Фридрих Цёлльнер опубликовал в The Quarterly Journal of Science (редактором там был химик и известный спиритуалист Уильям Крукс) статью О пространстве четырех измерений. Излагая в начале статьи математическую основу своей теории, Цёлльнер сделал отсылку к историческому докладу Бернхарда Римана О гипотезах, лежащих в основании геометрии, опубликованному в 1868 году, спустя два года после смерти автора и через 14 лет после того, как он был впервые прочитан Риманом в виде лекции, когда тот был еще студентом Гёттингенского университета. Риман развил идею, впервые высказанную его научным руководителем в Гёттингене, великим Карлом Гауссом, о том, что трехмерное пространство может иметь кривизну (точно так же как двумерная поверхность, скажем, сфера), и обобщил понятие кривизны на пространства произвольной размерности. Результат, известный как эллиптическая, или риманова, геометрия, позднее лег в основу общей теории относительности Эйнштейна. Цёлльнер также заимствовал предположение молодого ученого Феликса Клейна, занимавшегося проективной геометрией: в своей опубликованной в 1874 году статье тот показал, что развязывать узлы и разъединять продетые одно в другое кольца возможно, просто перенося их в четвертое измерение и там переворачивая. Так, начав с прочного математического обоснования, Цёлльнер подготовил почву для изложения своей теории объяснения того, как ду́хи, существующие, по его мнению, в высших измерениях, способны выполнять удивительные трюки (особенно с развязыванием узлов), которые он наблюдал на спиритических сеансах знаменитого медиума Генри Слейда (разоблаченного впоследствии как мошенника и шарлатана). Как и Цёлльнер, Хинтон считал, что в рамках трехмерного восприятия действительности нас удерживает только сила привычки и что четвертое измерение, возможно, находится рядом с нами нужно лишь научиться его видеть.
Хотя представить себе четырехмерный объект затруднительно, нарисовать его плоское изображение довольно легко, особенно если это четырехмерный аналог куба, для которого Хинтон придумал термин тессеракт. Для начала нарисуйте два квадрата, слегка отступающие друг от друга, затем соедините их углы прямыми линиями. У вас получится изображение куба в перспективе ваше воображение придает ему объем, как бы разделяя квадраты в пространстве. Теперь нарисуйте два куба, соединенные углами. Будь у нас четырехмерное зрение, мы увидели бы их как два куба, разделенные в четвертом измерении, то есть как перспективное изображение тессеракта. К сожалению, такие плоские изображения четырехмерных объектов слабо помогают нам понять, как те выглядят в действительности. Хинтон осознал, что научиться видеть в четырех измерениях легче, наблюдая трехмерные модели, которые при вращении демонстрируют различные аспекты четырехмерных объектов: по крайней мере, при этом мы рассматриваем перспективное изображение реального объекта, а не перспективное изображение другого перспективного изображения. Для этого он придумал хитроумное наглядное пособие в виде набора разноцветных деревянных кубиков с гранью в один дюйм. Полный набор состоял из 81 кубика, раскрашенного в 16 цветов, из 27 плиток, использовавшихся для демонстрации аналогии с трехмерными объектами, которые можно построить в двумерном пространстве, и из 12 разноцветных каталожных кубов. Путем сложных манипуляций с кубиками, детально описанных им в книге Четвертое измерение, впервые опубликованной в 1904 году, Хинтон сумел представить различные поперечные сечения тессеракта, а затем, запомнив, какие именно кубы и в какой ориентации составляют эти сечения, заглянуть в многомерный мир.
Действительно ли Хинтон научился создавать четырехмерные образы в своем воображении? Удалось ли ему в дополнение к привычным нам направлениям вверх-вниз, вперед-назад и вправо-влево увидеть ката и ана (так он назвал два противоположных направления, существующие в четвертом измерении)? Не имея возможности залезть к нему голову, мы вряд ли это узнаем. Нам точно известно, что не он один пытался создать трехмерные модели четырехмерных объектов. Он продемонстрировал кубики сестре своей жены Алисии Буль Стотт, которая интуитивно почувствовала геометрию четвертого измерения и мастерски освоила создание картонных моделей, представляющих собой трехмерные сечения четырехмерных политопов. Вопрос тем не менее остается: можно ли таким способом выработать у себя настоящее четырехмерное видение, или же такие модели просто помогают понять и освоить геометрию четырехмерных объектов?
В каком-то смысле способность видеть дополнительное измерение сродни способности различать новый цвет, который мы раньше не видели. В 1923 году французскому импрессионисту Клоду Моне в возрасте 82 лет сделали операцию по удалению помутневшего хрусталика (катаракты) левого глаза. После этого преобладающие цвета в его произведениях поменялись с теплой гаммы оттенков красного и коричневого на синие, голубые и фиолетовые. Он даже переписал некоторые свои работы, добавив, например, к белым кувшинкам оттенки голубого. Это дало основания предположить, что после операции Моне стал видеть ультрафиолетовый участок спектра. Возможность такого изменения зрения подтверждается известным фактом, что хрусталик глаза человека не пропускает свет с длиной волны меньше 390 нанометров (миллиардных долей метра) это нижний предел фиолетового диапазона, хотя сама сетчатка способна воспринимать свет с длинами волн до 290 нанометров, то есть ультрафиолетовый. Есть также немало более поздних свидетельств, когда после удаления хрусталика как дети, так и люди в возрасте приобретают способность видеть участок спектра за пределами фиолетового. Один из наиболее подробно описанных случаев произошел с бывшим военным летчиком, инженером из штата Колорадо Алеком Комарницким, которому заменили пораженный катарактой хрусталик на искусственный, пропускавший часть ультрафиолетового излучения. В 2011 году тестирование с помощью монохроматора в лаборатории фирмы Hewlett-Packard показало, что Комарницкий видит свет с длинами волн до 350 нанометров как темно-фиолетовый и даже различает яркость излучения, находящегося в еще более дальнем участке ультрафиолетового спектра, вплоть до 340 нанометров.
Вращение тессеракта. Вверху: традиционное изображение тессеракта как куба в кубе. В середине: результат вращения на небольшой угол; центральный куб начал смещаться и преобразовываться в правый куб. Внизу: в результате дальнейшего вращения тессеракта центральный куб переместился гораздо ближе к тому месту, где вначале находился правый куб. В итоге тессеракт совершает полное вращение и возвращается в первоначальное состояние. Важно, что в процессе вращения тессеракт не претерпел никакой деформации, а все видимые на иллюстрациях искажения результат изменения перспективы.
У большинства из нас в сетчатке три типа колбочек (рецепторов, отвечающих за цветовое зрение). У основной массы людей, страдающих так называемой цветовой слепотой, а также у многих других млекопитающих, в том числе собак и широконосых обезьян, типов колбочек только два, поэтому они видят приблизительно 10 000 оттенков цветов, а не миллион или около того, как все остальные. Однако известны редкие случаи, когда в сетчатке человека удавалось обнаружить четыре рабочих типа колбочек. Такие люди (тетрахроматы) способны, по оценкам ученых, различать почти на сто миллионов оттенков больше, чем остальные. Но поскольку им, как и всем нам, свойственно полагать, что цветовое зрение у всех одинаковое, без специального тестирования они могут далеко не сразу осознать свои сверхспособности.
Итак, в определенных обстоятельствах люди могут видеть то, что большинству из нас недоступно. Если есть люди, видящие ультрафиолетовое излучение или различающие больше оттенков цветов, чем другие, то почему не быть и таким, которые могут видеть четвертое измерение? Судя по всему, наш мозг способен научиться обрабатывать сенсорную информацию, которую мы обычно не воспринимаем. Не исключено, что он может также научиться создавать в нашем воображении четырехмерные образы.