Сегодня компьютеры и другие передовые технологии дают нам огромное преимущество в поисках возможности визуализировать мир четырех измерений. Можно легко создать анимацию каркасной модели тессеракта например, показать, как в процессе вращения меняется его изображение на плоском экране. Наш мозг, конечно, все равно интерпретирует то, что мы видим, как странное поведение сопряженных друг с другом кубов, а не как четырехмерное изображение. И все-таки мы сознаем, что перед нами происходит нечто необычное, что невозможно объяснить с точки зрения привычных трех измерений. Есть ли надежда, что сегодняшние (или завтрашние) технологии позволят нам увидеть четвертое измерение непосредственно?
Существует точка зрения, согласно которой, что бы там ни говорили Хинтон и другие, человек никогда не сможет по-настоящему видеть в четырех измерениях, поскольку весь мир наш безнадежно трехмерен, и мозг наш трехмерен, и весь аппарат, которым снабдила нас эволюция, способен интерпретировать получаемую от органов чувств информацию только в трехмерном контексте. Никакие усилия человеческого разума не смогут переместить частицы, из которых состоят наши тела, в иную плоскость бытия. И никакие чудеса инженерной мысли никогда не позволят нам создать четырехмерный объект, например настоящий тессеракт. Это, впрочем, никогда не останавливало писателей-фантастов, в чьем воображении то и дело возникают всевозможные странные стечения обстоятельств, приводящие к тому, что у обычного трехмерного объекта появляется дополнительное измерение. В рассказе Роберта Хайнлайна Дом, который построил Тил, впервые опубликованном в феврале 1941 года в журнале Astounding Science Fiction, изобретательный инженер спроектировал дом, имеющий восемь кубических комнат, расположенных в виде трехмерной развертки тессеракта. К несчастью, вскоре после завершения строительства происходит землетрясение и дом складывается в реальный гиперкуб, а рискнувшие войти в него оказываются полностью сбитыми с толку происходящими внутри явлениями. В рассказе Лист Мёбиуса (1950 года) часть предельно запутанной системы Бостонского метрополитена оказывается в четвертом измерении вместе с поездом и всеми его пассажирами. Правда, в конце концов все благополучно прибывают в пункт назначения. Автор рассказа Армин Джозеф Дейч, астроном Гарвардской обсерватории (в рассказе, кстати, одна из станций метро называется Гарвард), обыгрывает тему бутылки Клейна односторонней поверхности, которая может существовать только в четырех измерениях, и ленты Мёбиуса.
Художники тоже пытались запечатлеть в своих произведениях суть четырехмерного пространства. В своем опубликованном в 1936 году Манифесте димензионистов венгерский поэт и теоретик искусства Карой Тамко-Ширато утверждает, что в результате эволюции искусства литература покинула линию и вошла в плоскость Живопись покинула плоскость и вошла в пространство [а] скульптура вышла из замкнутых, неподвижных форм. За этим, продолжает Тамко-Ширато, последует художественное завоевание четырехмерного пространства, до сих пор остававшегося абсолютно лишенным искусства. Завершенное Сальвадором Дали в 1954 году Распятие (Corpus Hypercubus) объединяет классическое изображение Христа с разверткой тессеракта. В лекции, прочитанной в 2012 году в Музее Сальвадора Дали, геометр Томас Бэнчофф, консультировавший художника по математическим вопросам, связанным с его картинами, объяснял, что Дали пытался взять объект из трехмерного мира и вынести за его пределы Целью этого действа было изобразить одновременно две перспективы два наложенных друг на друга креста. Подобно ученым XIX века, пытавшимся рационально обосновать спиритуализм наличием бытия в некоем высшем пространстве, Дали использовал идею четвертого измерения, чтобы объединить религиозное с физическим.
У физиков XXI века есть новый повод заинтересоваться высшими измерениями: теории струн. Согласно этим теориям, субатомные частицы, такие как электроны и кварки, описываются не как точки в пространстве, а представляют собой одномерные вибрирующие струны. Самое странное свойство этих теорий вот в чем: чтобы быть математически согласованными, им необходимо наличие у пространства-времени, в котором мы живем, дополнительных измерений. Одна из этих теорий, называемая теорией суперструн, исходит из существования десяти измерений, ее разновидность, известная как М-теория, оперирует одиннадцатью, а еще одна, так называемая бозонная теория струн, требует наличия целых двадцати шести измерений. Все эти дополнительные измерения компактифицированы, то есть значимы только на фантастически малых расстояниях. Быть может, когда-нибудь мы научимся усиливать или разворачивать эти измерения или даже наблюдать их как есть. А пока (и в обозримом будущем) придется ограничиться хорошо знакомыми нам тремя макроскопическими измерениями пространства. Так что вопрос о том, в силах ли мы представить себе, как в реальности выглядит четырехмерный объект, остается открытым.
Наш опыт зрительного восприятия мира строится на том, что свет, проходя через глазное яблоко, попадает на сетчатку и создает два плоских изображения. Светочувствительные клетки сетчатки преобразуют свет в электрические сигналы, которые передаются в зрительную кору головного мозга, а уже там двумерная информация реконструируется в трехмерную. Два глаза позволяют нам видеть объект под немного различными углами, а мозг еще в нашем юном возрасте обучается интерпретировать эти различия как разницу в перспективе и строить трехмерное изображение. Но даже закрыв один глаз, мы не переключаемся мгновенно в двумерное толкование мира. Смотря на мир одним глазом, мы все равно получаем от него подсказки в виде искажений перспективы, игры света и тени, которые позволяют нам в своем воображении воссоздать объем видимого. А еще для того, чтобы усилить ощущение трехмерности, мы можем двигаться или крутить головой, изменяя угол зрения; можем дополнять то, что видим, информацией от других органов чувств слуховой, осязательной. Мы так наловчились добавлять к картинке лишнее измерение, что, смотря кино на плоском экране телевизора, автоматически, без всяких 3D-технологий воспринимаем его как объемное.
Спрашивается: если мы способны построить трехмерное изображение из получаемой нами двумерной картинки, можем ли мы, используя трехмерную зрительную информацию, создать в своем воображении мысленный образ четвертого измерения? Наша сетчатка плоская от природы, но у электронной технологии нет такого ограничения. Установив в разных местах достаточное количество фотокамер или других устройств для получения изображений, мы можем собирать информацию одновременно с какого хотим количества точек, под любыми углами. Но все же для формирования четырехмерного изображения этого мало. Наблюдатель с реальным четырехмерным зрением, смотря на объект в нашем мире, способен был бы видеть не только всю его трехмерную поверхность, но одновременно и то, что находится внутри. К примеру, если вы запрете свои ценности в сейфе, четырехмерное существо сможет, бросив на него один лишь взгляд, не только увидеть сейф одновременно со всех сторон, но и заглянуть внутрь (а при желании и достать его содержимое!). И это не потому, что подобное существо обладает рентгеновским зрением и способно видеть сквозь стены, нет. Просто у него есть возможность использовать дополнительное измерение. Мы используем ту же возможность, глядя на замкнутое пространство в двумерном мире. Нарисуйте квадрат на бумаге пусть это будет двумерный сейф, а внутри него какие-нибудь драгоценности. Житель Флатландии, обитающий в плоскости своей двумерной страны, увидит только внешнюю границу сейфа отрезок прямой. Мы же, смотря на лист бумаги флатландский мир сверху, видим одновременно и линии, образующие стенки сейфа, и его содержимое и можем, протянув руку, вынуть из него двумерные драгоценности. Флатландец несказанно удивился бы тому, как мы сумели, не проделав ни единого отверстия в стенках, увидеть то, что внутри сейфа, и достать спрятанное. Точно так же и наблюдатель, рассматривающий наш мир из своего четвертого измерения, смог бы одновременно видеть и снаружи, и изнутри все составные части любого трехмерного объекта будь то дом, автомобиль или человеческое тело.
Один из возможных способов создать если не четырехмерное зрение, то хотя бы его иллюзию это сконструировать трехмерную сетчатку, состоящую из множества слоев, на каждый из которых проецируется уникальное сечение трехмерного объекта. Информацию с такой искусственной сетчатки можно было бы передавать непосредственно в человеческий мозг таким образом, чтобы у его обладателя был доступ одновременно ко всем сечениям в точности как у настоящего четырехмерного наблюдателя. В результате получилась бы пусть не реальная четырехмерная картинка, но нечто подобное образу трехмерного объекта, который мы увидели бы, рассматривая его с высоты четвертого измерения. Такая технология немало пригодилась бы в разных областях. Причем первый компонент для нее трехмерная сетчатка уже существует в реальности: это медицинские сканеры, строящие объемные изображения человеческого тела из двумерных изображений-срезов. Второй компонент нам пока недоступен: мы не можем передать информацию в зрительную кору таким образом, чтобы мозг сумел построить из нее многоракурсное изображение объекта во всех его видах сразу, для этого у нас нет ни достаточно совершенного нейрокомпьютерного интерфейса, ни нужных знаний в области неврологии. Однако не исключено, что Человек 2.0 не такая уж далекая перспектива всего-то нужно подождать еще пару десятков лет. Футуролог Рэй Курцвейл считает, что к 2030-м годам мы будем вживлять себе в мозг наноботы микроскопические роботы, способные связываться с облачными компьютерными сервисами. В 2017 году технологический предприниматель Илон Маск основал компанию Neuralink, планирующую объединить человеческий мозг с искусственным интеллектом путем вживления в его кору электронных имплантатов.
Научить человека пользоваться трехмерной сетчаткой и создавать мысленные образы таким радикально новым способом будет нелегко, даже имея необходимые для этого технологии и установив связь между ними и корой мозга, потребуются длительное обучение и тренировки. Зато какие уникальные возможности откроются перед врачами-диагностами, хирургами, исследователями и педагогами!
Сложный процесс обучения четырехмерному видению можно реализовать только при помощи симуляций, поскольку в нашем мире четырехмерных объектов просто не существует. Вероятно, проще всего будет начать с компьютерной модели тессеракта, изучавшегося Хинтоном. Глядя на трехмерное воплощение тессеракта, мы видим его только с одного ракурса, воспринимая лишь одну проекцию четырехмерного объекта. Чтобы человек смог постичь все четырехмерное многообразие тессеракта, зрительному центру мозга потребуется мгновенно собрать воедино и скомбинировать в целостное изображение многочисленные проекции. Повторимся: даже при наличии необходимых технологий и нейронных связей придется потратить немало времени на упражнения и тренировки, чтобы четвертое измерение предстало перед нами во всем своем величии. Трудно да, но не невозможно. Есть вполне реальная надежда, что, мысленно соединяя с помощью компьютерных технологий в единый образ большое количество трехмерных сечений четырехмерного объекта, мы сумеем понять, что же это такое видеть в четырех измерениях.
Математика дает нам возможность всесторонне и глубоко изучать то, что неподвластно одному нашему воображению. С ее помощью мы можем выходить за пределы своего привычного трехмерного мира и исследовать в мельчайших подробностях свойства вещей, имеющих четыре и более измерений. Математика позволяет нам двигать вперед теоретическую науку, необходимую для познания Вселенной как на ультрамикроскопическом, так и на космическом уровнях. Но что еще важнее, она открывает перед нами возможность разработать средства, которые позволят нам воочию увидеть многомерный мир.
Глава 3. Неслучайная случайность
Так многое в жизни, похоже, определяется чистой случайностью.
Многое из происходящего вокруг кажется нам совершенно непредсказуемым. Мы объясняем это иронией судьбы, виним в происшедшем неудачное стечение обстоятельств или списываем на то, что просто повезло. Как же много всего в этом мире, похоже, зависит от капризов удачи, везения или невезения! Но математика поможет нам развеять туман и в путанице и неразберихе случайности разглядеть некое подобие порядка.
Тщательно перетасуйте колоду карт. Готово? Поздравляю скорее всего, вы только что совершили нечто уникальное. Почти наверняка еще ни у кого за всю историю человечества ни разу не получилось перемешать карты так, чтобы они расположились в колоде именно в такой последовательности. Причина проста: 52 карты дают нам 52 × 51 × 50 × 49 × × 3 × 2 × 1 вариантов их расположения в колоде. Это в общей сложности примерно 8 × 1067, или 80 миллионов триллионов триллионов триллионов триллионов триллионов, вариантов различных последовательностей карт. Если бы все живущие на свете люди тасовали по колоде карт в секунду с момента возникновения Вселенной, то на сегодняшний день они перетасовали бы их всего 3 × 1027 раз, что в сравнении с теоретически возможным количеством вариантов просто ничтожно мало.
И тем не менее утверждают, что бывали случаи, когда после тасовки новой колоды карты оказывались в том же порядке, в каком они были сложены в коробке. По правде говоря, шансы в этом случае гораздо выше, чем 1 к 8 × 1067, то есть чем вероятность получить любую другую последовательность. В новой, только что распакованной колоде карты обычно рассортированы по мастям червы, трефы, бубны и пики, а каждая масть уложена в возрастающем порядке, начиная с туза, двойки и тройки и кончая валетом, дамой и королем. Если сдающий мастер американской тасовки и может раз за разом точно делить колоду пополам, а затем, пролистывая половинки, соединять их вместе, перемежая ровно по одной карте из каждой стопки, то исходный порядок карт восстановится всего через восемь таких идеальных тасовок. Вот почему в казино новую колоду часто тасуют по-детски, раскладывая карты на столе и перемешивая их круговыми движениями ладоней (такой способ еще называют мытьем колоды). Чтобы так же хорошо перемешать карты предыдущим методом, потребуется не меньше семи тщательных, но не идеальных тасовок. Мытье дает порядок, который можно уверенно назвать случайным; другими словами, шансы того, что, посмотрев одну карту в перетасованной таким образом колоде, вы сможете угадать следующую, равны примерно 1 к 51. Но будет ли такой порядок истинно случайным? Что есть случайность и бывает ли вообще что-то абсолютно случайным?
Понятие случайности, или полной непредсказуемости, существует столько же, сколько сама цивилизация, а может быть, и дольше. Когда нам нужно сделать случайный выбор, первое, что приходит в голову, бросить монетку или игральные кости. Древние греки для азартных игр использовали таранные кости коз и овец. Позже они стали применять и игральные кости правильной формы, хотя где именно те появились впервые, точно неизвестно. Египтяне пользовались игральными костями еще пять тысяч лет назад при игре в сенет. В Ригведе, древнем тексте на ведийском санскрите, написанном около 1500 года до нашей эры, также упоминаются кости, а в одной из месопотамских гробниц, относящейся к XXIV веку до нашей эры, обнаружены целые наборы для игр с костями. Греческие кости тессеры имели кубическую форму и нанесенные на гранях цифры от 1 до 6; но в том виде, как они существуют сегодня (то есть с очками на противоположных сторонах, дающими в сумме семь), кости появились только во времена Римской империи.
Таранные кости животных, использовавшиеся для игр (например, для игры в бабки).
Математики довольно долго обходили вниманием вопросы случайности, традиционно считавшиеся прерогативой религии. Как восточные, так и западные философии в исходе многих событий видели божий промысел или волю иных высших сил. Из Китая пришла И Цзин (Книга перемен), система гадания, основанная на толковании 64 различных гексаграмм. Некоторые христиане пользовались для принятия решения более простым методом вытягиванием соломинок, заложенных между страниц Библии. Эти и множество других интереснейших методик прогнозирования, к сожалению, имели один отрицательный эффект слишком долго никто не предпринимал попыток рационально объяснить природу случайности. В конце концов, если исход событий предопределен силами, недоступными пониманию человека, зачем суетиться и пытаться логически анализировать, почему все происходит так, а не иначе? К чему выяснять, нет ли каких-то законов, которым подчиняется вероятность того или иного исхода?