Как-то не верится, что, бросая кости, древние греки или римляне не имели хотя бы интуитивного представления о вероятности выпадения того или иного варианта. Когда речь идет о деньгах или иной материальной выгоде, и игроки, и другие заинтересованные стороны очень быстро схватывают все нюансы игры. Так что, скорее всего, какое-то внутреннее чутье, понимание шансов благоприятного исхода сформировалось не одно тысячелетие назад. Ну а наука всерьез взялась за изучение случайности и вероятности только в период позднего Возрождения и в XVII веке. В авангарде научных открытий в области случайности и вероятности в то время шли французский математик и философ (и к тому же ревностный янсенист) Блез Паскаль и его соотечественник Пьер де Ферма. Эти двое великих мыслителей взялись решить задачу, которую упрощенно можно сформулировать так: предположим, два игрока подбрасывают монету и денежный выигрыш достается тому, кто первым наберет три очка. Однако игра прерывается, скажем, в тот момент, когда один из игроков ведет со счетом 2:1. Как тогда разделить выигрыш между игроками наиболее справедливым образом? Еще до Паскаля и Ферма было предложено немало решений этой задачи. Возможно, ставку следует разделить поровну, раз игра не закончилась и определить победителя невозможно. Но это несправедливо по отношению к игроку, набравшему два очка, надо же как-то учесть его преимущество. С другой стороны, вариант решения, в котором предлагалось отдать все деньги лидеру, несправедлив по отношению к его сопернику, у которого тоже был шанс выиграть, если бы игра продолжилась. В третьем варианте решения предлагалось разделить ставку с учетом набранных очков, то есть две трети отдать игроку с двумя очками и одну треть игроку с одним очком. На первый взгляд, справедливо но есть проблема. Предположим, игра прервалась бы при счете 1:0. В этом случае, если применять то же правило, игрок, набравший одно очко, получает все деньги, второй же (который мог бы выиграть, если бы игру довели до конца) остается ни с чем.
Паскаль и Ферма нашли более удачное решение, а заодно открыли новый раздел математики. Они вычислили вероятность победы каждого из игроков. Игроку с одним очком, чтобы выиграть, нужно набрать еще два очка подряд. Вероятность этого равна S, помноженной на S, то есть j. Таким образом, он должен получить четверть суммы выигрыша, а остальное идет сопернику. Этим же методом можно решить любую задачу такого рода, только вычисления могут оказаться посложнее.
Работая над этой задачей, Паскаль и Ферма пришли к понятию так называемого математического ожидания. В азартных играх или любой другой ситуации, когда успех зависит от случая, математическим ожиданием называют среднее значение выигрыша, на который вы можете резонно рассчитывать. Предположим, например, что вы играете в кости и выигрываете по шесть фунтов каждый раз, когда выпадает три очка. Ожидаемое значение выигрыша в этом случае один фунт, поскольку шансы, что выпадет три очка, составляют один к шести, а одна шестая выигрыша это и есть один фунт. Если играть много раз, за каждый бросок кости вы заработаете в среднем по одному фунту. После 1000 бросков ваш средний заработок составит 1000 фунтов, так что если каждый раз ставить по фунту, то вы как раз выйдете в ноль. Обратите внимание, что, хотя ожидаемое значение и составляет один фунт, выиграть ровно столько в этой игре невозможно. Не во всякой азартной игре возможно получить за одну партию точную ожидаемую сумму выигрыша; ожидаемое значение это тот средний размер выигрыша за партию, на который вы можете рассчитывать при многократном повторении игры.
В лотерее ожидаемое значение, как правило, отрицательное, поэтому с рациональной точки зрения это не лучший способ заработать. (В некоторых лотереях при переносе джекпота иногда возникают ситуации, когда ожидаемое значение выигрыша становится положительным.) То же касается и игр в казино, по очевидной причине: казино предприятие коммерческое, его задача получать прибыль. Случаются, правда, и сбои из-за ошибки в расчетах. Известен случай, когда казино увеличило сумму выигрыша всего лишь по одному из исходов игры в блек-джек. В результате математическое ожидание выигрыша стало положительным и заведение за несколько часов потеряло огромную сумму. Заработок казино напрямую зависит от досконального знания математики теории вероятностей.
Случаются совпадения настолько маловероятные, что люди начинают подозревать неладное: один и тот же человек дважды выигрывает главный приз в лотерее или в двух розыгрышах выпадают одинаковые номера. Журналисты часто слетаются на такие истории как пчелы на мед, раздувая из кажущегося фантастическим совпадения настоящую сенсацию. А все из-за того, что мы в большинстве своем просто не умеем объективно оценивать вероятность подобных событий, поскольку исходим из ложных предпосылок. Взять хотя бы случай со счастливчиком, которому главный приз достался два раза: мы пытаемся решить эту задачу применительно к себе и рассуждаем а у меня какие шансы выиграть дважды? И тут же отвечаем себе: да почти никаких. Но ведь те редкие люди, которым это удается, как правило, регулярно играют в лотерею много лет подряд. Два выигрыша за много лет игры это уже совсем не так удивительно. Еще важнее помнить, какое огромное количество людей участвует в лотерее. Большинство из них никогда не выиграет джекпот даже один раз, не говоря уже о двух. Но при таком количестве играющих тот факт, что кто-то где-то выигрывает дважды, уже не выглядит таким уж невероятным.
Это может показаться парадоксальным и нелогичным, но причина в том, что мы пытаемся примерить задачу на себя. Естественно, крайне маловероятно, что именно вы выиграете джекпот два раза. Но если оценивать шансы того, что кому-либо из играющих так повезет, то вероятность такого выигрыша нужно умножить на количество участников лотереи (что значительно увеличивает шансы), а также на число способов, которыми можно выиграть лотерею дважды (оно приблизительно равно количеству раз, что участники сыграли в лотерею, возведенному в квадрат и деленному пополам). Если учесть все эти факторы, шансы того, что фортуна улыбнется кому-то дважды, начинают выглядеть довольно неплохо.
Наша ошибка при оценке вероятности какого-либо события заключается в том, что мы учитываем не все возможности его наступления. Именно она лежит в основе так называемого парадокса дней рождения (который, строго говоря, и парадоксом-то не является): если собрать в одной комнате 23 человека, то вероятность того, что у двух из них совпадут дни рождения, превысит 50 %. Казалось бы, она должна быть гораздо ниже. Кто-то даже поспорит: ведь если для такого совпадения достаточно всего 23 человек, то у каждого из нас должно быть как минимум несколько знакомых, родившихся в тот же день, что и мы, а на деле такое всегда вызывает удивление. Но ведь в парадоксе речь идет не о вероятности того, что кто-то конкретный из этих людей (например, вы) обнаружит в комнате еще кого-то с тем же днем рождения, а о шансах того, что дни рождения совпадут у любых двоих из группы. Другими словами, нас интересует не вероятность того, что у двух конкретных членов группы один и тот же день рождения, а шансы того, что хотя бы два любых человека из группы родились в один день. Вероятность такого совпадения составляет 1 (365/365 × 364/365 × 363/365 × × × 343/365) = 0,507, или 50,7 %. В группе из 60 человек эта вероятность превышает 99 %. А вот чтобы получить 50-процентную вероятность того, что у кого-то в группе день рождения совпадает с вашим, нужно уже 253 человека.
Одна из причин, по которой это кажется парадоксальным, заключается в том, что мы смешиваем два разных вопроса. У большинства из нас просто нет 253 достаточно близких знакомых, у которых мы бы знали день рождения, поэтому нам и кажутся маловероятными подобные случайные совпадения. Но это вовсе не значит, что вероятность совпадения дней рождения у двух других людей так же мала.
Контринтуитивными могут казаться не только положения, относящиеся к вероятности, но и понятие случайности. Какая из двух последовательностей орлов (О) и решек (Р) ниже кажется вам более случайной?
О, Р, О, О, Р, О, Р, Р, О, О, Р, Р, О, Р, О, Р, Р, О, О, Р
или
Р, О, Р, О, Р, Р, О, Р, Р, Р, О, Р, Р, Р, Р, О, О, Р, О, Р
Подозреваю, что многие выберут первую, поскольку в ней поровну орлов и решек, расположенных без видимого порядка. Во второй решек явно больше, к тому же бросаются в глаза более длинные серии повторяющихся букв. На самом деле вторую цепочку один из нас (Агниджо) образовал с помощью генератора случайных чисел, а первую специально составил таким образом, чтобы она напоминала результат работы человека, которого попросили написать случайную последовательность букв О и Р. Человек в таком случае обычно избегает длинных серий повторяющихся букв, обе использует примерно поровну и переключается с О на Р и обратно чаще, чем когда это происходит случайно.
А как насчет вот такой последовательности?
О, Р, О, О, О, Р, Р, О, О, О, Р, О, О, О, О, Р, О, Р, Р, Р
Она выглядит вполне случайной, даже статистические методы анализа не заподозрят в ней дело рук человека. В действительности же она построена из десятичных знаков числа пи (без начальной тройки): О обозначает нечетные знаки, а Р четные. Так являются ли знаки числа пи случайными? Формально нет, так как первый десятичный знак всегда 1, второй всегда 4 и так далее, сколько бы раз вы ни пытались сгенерировать эту последовательность. Если нечто имеет постоянное место и неизменную величину (когда бы нам ни вздумалось на это нечто посмотреть), какая уж тут случайность? И все же математики задаются вопросом, можно ли считать десятичные знаки числа пи случайными статистически, то есть распределенными равномерно: другими словами, с одинаковой ли вероятностью в его записи встречаются все цифры по отдельности и все сочетания цифр (пары, тройки и так далее). Если да, то про пи можно сказать, что оно нормально по основанию 10. Именно так думает подавляющее большинство математиков. Считается также, что число пи абсолютно нормально, то есть не только его десятичные знаки статистически случайны, но и двоичные знаки (если его записать в двоичной системе, используя только нули и единицы), и троичные (если оно записано нулями, единицами и двойками) и так далее. Доказано, что почти все иррациональные числа абсолютно нормальны, но вот найти доказательство для конкретных случаев оказывается невероятно трудным делом.
Первый пример известного нормального числа по основанию 10 постоянная Чемперноуна, названная так в честь английского экономиста и математика Дэвида Чемперноуна, который еще студентом в Кембридже опубликовал работу о ее значении. Чемперноун изобрел эту константу специально для того, чтобы доказать, что нормальные числа существуют, а заодно продемонстрировать, как легко такое число сконструировать. Его постоянная представляет собой просто-напросто цепочку, составленную из следующих друг за другом чисел натурального ряда: 0,1234567891011121314, а потому содержит все возможные последовательности цифр в равных пропорциях. Десятую часть всех цифр константы составляют единицы, сотую часть всех пар цифр пара 12 и так далее. Вот только, несмотря на нормальность этого числа по основанию 10, входящие в него цепочки цифр совсем не выглядят случайными (то есть неупорядоченными и непредсказуемыми), особенно в начале. Кроме того, нам неизвестно, является ли это число нормальным по какому-либо иному основанию, кроме 10. Существуют и другие константы, нормальность которых доказана, но все они, как и постоянная Чемперноуна, сконструированы нормальными искусственно. До сих пор не доказано, является ли число пи нормальным хотя бы по какому-то основанию.
Первые двести с небольшим знаков числа пи.
На момент написания этой книги известно 22 459 157 718 361, или чуть больше 22 триллионов, знаков числа пи. В будущем мы, конечно, сможем вычислить и больше знаков, но те, что нам известны, уже не изменятся никогда, сколько бы раз мы ни производили вычисление. Известные знаки числа пи часть застывшей реальности математической вселенной, а потому не могут быть случайными. А что насчет остальных его знаков, тех, которые еще не вычислены? Если исходить из того, что пи нормально по основанию 10, они пока остаются для нас, по сути, статистически случайными. Другими словами, если вас попросят написать случайную цепочку из тысячи цифр, вы можете, предварительно собрав компьютер, способный вычислить на 1000 знаков числа пи больше, чем известно сейчас, использовать полученные новые знаки в качестве случайной цепочки. Еще одну случайную цепочку? Пожалуйста вычисляем еще тысячу (ранее неизвестных) знаков. В связи с этим возникает любопытный философский вопрос о природе математических явлений: насколько реальны те десятичные знаки числа пи, до которых мы еще не добрались? Трудно ведь утверждать, что, скажем, септиллионный знак числа пи не существует или что у него нет конкретного постоянного значения, даже если мы не знаем, что это за знак. Но в каком смысле и в каком виде он существует до того, как появится в памяти трудяги-компьютера в результате невероятно долгого вычисления вычисления, которое пока еще не производилось?
Кстати, стоит упомянуть любопытное открытие, сделанное в 1996 году исследователями Дэвидом Бэйли, Питером Боруэйном и Саймоном Плаффом. Им удалось найти довольно простую формулу сумму бесконечного ряда членов, с помощью которой можно вычислить любой знак числа пи, не зная ни одного предыдущего знака. (Строго говоря, вычисляемые по формуле Бэйли Боруэйна Плаффа знаки не десятичные, а шестнадцатеричные, то есть представлены по основанию 16.) На первый взгляд это кажется невозможным, да и для других математиков стало полным сюрпризом. Но еще больше поражает другое: для того чтобы вычислить с помощью этого метода, к примеру, миллиардный знак числа пи, достаточно обычного ноутбука и совсем немного времени меньше, чем на обед в ресторане. Разные варианты формулы Бэйли Боруэйна Плаффа могут использоваться для поиска других иррациональных чисел, подобных пи, с десятичными знаками, что убегают вдаль бесконечной цепочкой, нигде не повторяясь.
Есть ли в чистой математике вообще хоть что-нибудь истинно случайное вопрос не праздный. Случайность предполагает полное отсутствие упорядоченности и предсказуемости. Непредсказуемым можно назвать только то, что неизвестно, и только при условии, что нет никаких оснований считать один из возможных исходов вероятнее другого. Математика, по сути дела, существует вне времени; другими словами, она не меняется, не эволюционирует от одного момента к другому. Единственное, что меняется, это наши знания о ней. Физический же мир изменяется непрерывно, причем эти изменения часто кажутся нам непредсказуемыми. Вращение подброшенной монеты мы считаем достаточно непредсказуемым, чтобы использовать этот метод для выбора одного из двух существующих решений. На деле же степень случайности зависит от того, какой информацией мы располагаем. Если бы нам были известны сила и угол броска, скорость вращения монеты, сопротивление воздуха и так далее, мы сумели бы (теоретически) точно предсказать, какой стороной вверх она упадет. То же касается и падения бутерброда с маслом, разве что в этом случае у нас имеются еще и научные данные, подтверждающие точку зрения пессимистов чаще он падает маслом вниз. Эксперименты показали, что если бутерброд подбросить вверх (такое, конечно, может произойти только в лаборатории или в школьной столовой), то вероятность его приземления маслом вниз составляет 50 %. Но вот если его смахивают со стола или он соскальзывает с тарелки, тогда он действительно чаще падает намазанной стороной вниз. Причина проста: случайное падение обычно происходит с высоты примерно уровня пояса плюс-минус сантиметров тридцать и у бутерброда как раз достаточно времени, чтобы сделать пол-оборота, поэтому если полет начинается из традиционного положения маслом вверх, то закончится он, скорее всего, жирным пятном на полу.
Большинство физических систем гораздо сложнее падающего бутерброда. К тому же некоторые еще и хаотичны, а это значит, что даже незначительное вмешательство в начальные условия может привести к последствиям огромного масштаба на более позднем этапе. Одна из таких систем погода. До появления современных метеопрогнозов оставалось лишь гадать, что день грядущий нам готовит. Метеоспутники, чувствительные наземные приборы и мощные компьютеры совершили настоящую революцию в метеорологии, позволив давать точный прогноз на период до 710 дней. Но при попытке заглянуть дальше даже самые передовые методики и высокотехнологичное оборудование наталкиваются на непреодолимый барьер сложность и хаотичность системы, включая так называемый эффект бабочки: представление о том, что ничтожное колебание воздуха, вызванное взмахом крыльев бабочки, способно, постепенно усиливаясь, превратиться в страшный ураган.