Слушатель: А как взаимосвязаны картинки на торе и шаре?
А.С.: То есть как именно они друг с другом соотносятся? Никак. Каждая из картинок, независимо друг от друга, является как бы «сетью», наброшенной на данную поверхность. Эту сеть при желании можно сделать состоящей из треугольных ячеек. Тогда она называется «триангуляцией поверхности».
Слушатель: А не может быть такого, что будет то же самое количество вершин, ребер и граней, но при этом картинка будет другая?
А.С.: Смотря, что понимать под словом «другая». Она может, безусловно, немного иначе выглядеть: ребра могут быть длиннее или короче. Но мне достаточно того, чтобы имелось то же самое количество вершин, ребер и граней. А при изгибах, растяжениях и сжатиях поверхности это будет именно так.
Слушатель: А...
А.С.: Итак, если вы поверили, что не изменится ни количество вершин, ни количество ребер, ни количество граней, то всё остальное я докажу совершенно строго. Я продемонстрирую, что величина ВР + Г на шаре и на торе разная: на автомобильной камере она равна 0, на сфереравна 2.
Слушатель: А если предположить, что дырка у тора имеет площадь ноль. По-прежнему число ЭйлераО?
А.С.: А что значит «площадь дырки»? Это значит, что бублик сходится в одной точкев серединке?
Слушатель: Да.
А.С.: Нет, эйлеров индекс В^Р + Г будет другой. Фигура, которая получится, не устроена как обычная плоскость в окрестности любой своей точки, потому что в окрестности серединки, где дырка сходится с разных сторон, она устроена очень сложно.
Чтобы понять это, рассмотрим сечение тора (с заклеенной дырой) вертикальной плоскостью, проходящей в стороне от точки заклейки, а также плоскостью, проходящей через точку заклейки. Рассмотрим две замкнутые кривые, получившиеся в сечениях (см. рис. 31).
Первая кривая устроена как окружность, окрестность любой ее точкипросто интервал, а вторая кривая устроена иначе (рис. 32). Потому что в любой микроскоп окрестность точки пересечения видится как крест, а не как отрезок. То же самое с торомс автомобильной камерой. С точки зрения таракана, который по ней ползает, это просто плоскость (если, конечно, дырка
в торе но была заклеена). Но и шар с точки зрения таракана тоже плоскость (ведь он в каждый момент времени видит только маленький кусочек «у себя под носом», а он почти плоский). То есть смотрите, что происходит. Таракан, который ползает по тору и по шару, не может понять, что это разные объекты. Мы такие же тараканы, мы живем в трехмерном пространстве, мы трехмерные тараканы. Мы знаем, что вокруг нас есть окрестность. Окрестность это обычное трехмерное пространство: его определяют 3 взаимно перпендикулярных оси. То есть я вижу трехмерную окрестность вокруг себя, но я не знаю, как устроена вся вселенная целиком. Я не могу иметь такого представления. Так вот: топология приоткрыла эту тайну. Гипотеза Пуанкаре как раз про то. как устроено пространство, где мы живем. Мы видим, что вокруг нас всё трехмерно, но мы не знаем внутри какого рода объекта мы живем. То ли мы живем в обычном бесконечном трехмерном пространстве, то ли мы живем на поверхности трехмерной, извините. сферы, которая ограничивает четырехмерный шар. Не можем мы этого понять, просто посмотрев вокруг себя. Ведь радиус такой «трехмерной сферы» может равняться, скажем. 100 миллионам световых лет. А на такие расстояния глаз посмотреть не способен.
Врезка 3. Еще одно упражнение для слушателей. Ниже описано странное путешествие неких космических Магелланов. Могло ли такое быть в космосе?
... Вех; астрономы Земли в 3333 году нашей эры были в глубоком недоумении. Один из них. направляя свой телескоп в разные точки небесной сферы, имел привычку фотографировать не только ее. но и (перейдя в другое полушарие Земли), фотографировать также диаметрально противоположную ей точку. Накопив изрядное количество таких пар фотографий, он принялся их изучать. И вдруг сюрприз: на одной из двух фотографий пары он увидел маленькое, но вполне различимое созвездие в виде правильного пятиугольника. Велико же было его изумление, когда на другой фотографии пары он увидел ТАКОЕ ЖЕ созвездие, той же величины и той же яркости! Велико было и удивление всех остальных астрономов. когда они услышали это сообщение (и немедленно проверили его). И скоро об этом узнали все жители Земли. Было решено одновременно выслать две космических экспедиции (на предмет проверки, не посылают ли на Землю сигналы внеземные цивилизации): одна экспедицияпрямо в центр первого пятиугольника, втораяв центр диаметрально противоположного пятиугольника.
Долго летели космонавты в ту и в другую сторону с одинаковой «субсветовой» скоростьюцелых 10 лет. И всё это время за их ракетами наблюдали чуткие приборы астрономов. Вдруг в центре первого 5-угольного созвездия была зафиксирована яркая вспышка неправильной формы, и первая ракета ИСЧЕЗЛА. Астрономы решили взглянуть, видна ли вторая ракета. К своему ужасу, они увидели, что ровно в тот же момент с диаметрально противоположной стороны была зафиксирована вспышка ТОЙ ЖЕ ФОРМЫ, и вторая ракета тоже исчезла.
Могло ли такое быть?
ОТВЕТ. Могло. Если бы только космос, в кот,орый погружена Земля, был не бесконечным трехмерным пространством, а очень большой, по конечной трехмерной сферой.
Чтобы лучше понять это, представьте себе, что наша Земля сплошь покрыта мировым океаном, на котором имеется (на экваторе) только один небольшой остров вроде Крита. Поверхность этого океана является двумерной сферой, но свойства у нее похожи на свойства трехмерной сферы. И выплыли с этого острова два одинаковых корабля (в один и тот же момент времени): один поплыл ровно на запад, другойровно на восток. Плыли они быстро и потому очень сильно столкнулись (в точке, диаметрально противоположной острову Криту). От столкновения они могли взорваться. После отплытия прочие люди следили за ними, посылая вслед радиоволны (а они, как известно, могут огибать поверхность Земли). На экране радара и на западе, и на востоке всё время был виден какой-то странный правильный пятиугольник (оказалось, что эторадиомаяк из пяти источников, построенный кем-то на противоположной точке поверхности Земли). Корабли взорвались как раз в центре этого пятиугольника. Взрыв был зафиксирован одновременно и западным, и восточным радаром.
Сверху из нашего трехмерного мира мы видим, что тор и сфераразные объекты. Но глазами червя, который ползает по двумерной поверхности, этого не видно, всё одинаковое. Вопрос: как же доказать червю, что поверхности разные?
Допустим, что у червя есть мышление, он может воспринять математическое рассуждение. Как я могу передать ему знание? А вот как. Я ему говорю: «Ты можешь, экспериментально исползав сферу, проверить, сколько здесь вершин?» Он говорит: «Ну, конечно могу. Я постепенно все их обползаю, поставлю метку, найду алгоритм, которым я посчитаю количество вершин». Тогда я спрошу: «Можешь ли ты посчитать количество ребер?»«Ну, конечно, могу»,говорит он. «А граней?»«Тоже могу. Нет проблем никаких. Каждый раз переходя из грани в грань, заливаю ее водой. В следующий раз я к ней приду, а она уже мокрая, значит, я ее уже посчитал». Понятно, что, находясь на двумерной поверхности, не выходя в трехмерное пространство, можно посчитать, сколько ребер, вершин и граней. Теперь, если я пересажу червя на тор, он посчитает вершины, грани и ребра и убедится, что индекс Эйлера имеет другое значение. На сфере2, а на торе0. Тут я ему и скажу: «Теперь ты понимаешь, что поверхности абсолютно разные, они с нашей человеческой трехмерной точки зрения абсолютно разные. Они с твоей точки зрения одинаковые, потому что ты видишь локально, а с нашей трехмернойони разные». То же самое происходит с нашей трехмерной вселенной, с точки зрения четырехмерного пространства. Наше пространство может быть устроено по-разному, но Г. Перельман доказал теорему, которая ограничивает класс того, что нам нужно проверять, когда мы выясняем, где живем.
Слушатель: А как Эйлер пришел именно к этой формуле?
А.С.: Честно говоря, я не знаю, но он вообще был гений. Говорят, что у него никогда не было математических ошибок и неверных утверждений. Даже не совсем обоснованные рассуждения Эйлера (после их очевидной коррекции) были впоследствии подтверждены. Видимо, он настолько верно чувствовал ситуацию, как будто внутри него находился «барометр правильности», с которым он постоянно сверялся.
Математика это прозрение. Вы идете но парку, вокруг листья шелестят, бах и вы всё поняли. Это не от вас, это как бы сверху идет.
Сейчас я буду доказывать, что на сфере индекс Эйлера равен
а на торе он равен 0, и, может быть, вам будет ясно, как Эйлер к этому пришел.
Рис. 33. Накидываем «сеть» из ребер и вершин на верхнюю половину сферы и на небольшой кусок поверхности тора. Нижняя часть сферы может трактоваться как одна гигантская грань (грани не обязательно должны быть треугольными). Оставшийся кусок тора НЕ МОЖЕТ считаться «гранью», так как грань не может выглядеть как трубка. Надо эту трубку подразбить на более мелкие части (на треугольники, квадратики и т.д.).
Допустим, я уже сформировал «сеть», покрывающую сферу, и «сеть» для тора (рис. 33).
Стираю одно ребро на сфере (потом буду стирать ребра и на торе). Что меняется вот в этом нашем выражении (то есть В^Р + Г)?
Слушатель: Минус одно ребро.
Слушатель: Минус одна грань.
А.С.: Значит, выражение ВР + Г не изменилось (рис. 34).
Какие еще операции я могу сделать с этой картинкой? Могу убрать еще одно ребро. Опять ничего не изменится. Но в какой-то
момент меня ударят но рукам. Некоторые вершины могут стать странными (что-то вроде куска забора в чистом поле).
Может получиться «висячая вершина» она связана с единственным ребром (может быть и несколько таких кусков, см. рис. 35).
Давайте превратим вот такое ребро во что-нибудь человеческое (только не в человеческое ребро!). Что для этого надо сделать?
Слушатель: Выпрямить.
А.С.: Да. Удалить вершину и выпрямить границу, убрав ненужный «кусок границы». Что изменилось?
Слушатель: Минус вершина.
Слушатель: Минус ребро.
А.С.: Минус ребро, потому что из двух соседних ребер стало одно. Заметьте, что в выражении ВР + Г опять ничего не изменилось. Итак, я буду упрощать картинку дальше (см. рис. 36).
Что происходит, когда я сниму еще ребро?
Пусть возникнет еще одна аномалия такого же типа. Возникнет вершина, из которой торчит ребро, и на другом конце ребра висит пустая вершина. Но по-прежнему ВР + Г такое же. как было раньше. Что я теперь могу сделать с этой вершиной и этим
ребром? Стереть их целиком. При этом количество и вершин, и ребер уменьшится на 1 (рис. 36). Значит, выражение опять не изменилось. а «сеть» на поверхности стала проще.
Я значительно увеличил грань, я убрал всё внутри нее. а выражение не менялось. «Сеть» свелась к двум граням, охватывающим сферу «сверху и снизу», разделенным замкнутой ломаной; в ней количество вершин равно количеству ребер, то есть В^Р + Г = Г = 2.
Для сферы формула Эйлера тем самым доказана.
Вопрос: «В какой ситуации логика этих рассуждений не может быть проведена?» Математик всегда изучает, в каком месте его рассуждение не пройдет. А не пройдет оно. например, на торе. На торе берем вершину и 2 ребра (рис. 37).
К такой картинке (рис. 37) приводится сниманием ребер любая «сеть» (достаточно общего вида ) на торе. Почему же нельзя снять еще одно ребро? Здесь я взываю к интуиции слушателей. Если мы разрежем тор по этим ребрам, а потом развернем, то получим квадрат. Чтобы лучше себе всё это представить, проделаем данные операции в обратном порядке: возьмем обычный квадрат из гибкой резины и изогнем его так. чтобы две противоположные стороны квадрата совпали (и затем склеим по совпавшим сторонам).
Получилась трубка (две оставшиеся стороны квадрата превратились при этом в два колечка). Изогнем трубку таким образом, чтобы эти колечки тоже совпали (и склеим их). Вот и получился из квадрата тор. По местам склеек восстанавливаем, где на этом торе расположены два ребра и одна вершина (из четырех вершин квадрата получилась ОДНА вершина на торе).
Осталось пояснить только один важный вопрос: так все-таки можно или нельзя при изучении топологии делать склейки, разрывы и надрезы? Выше говорилось, что при этом может измениться топологический тип объекта. Значит, если мы хотим сохранить топологический тип объекта, этого делать нельзя. Но можно безболезненно делать многое другое: растяжение, сжатие, перемещение, поворот объекта, увеличение его в несколько раз. Эти операции позволяют представить изучаемый объект в самом простом для понимания виде. Например, конус (заполненный внутри) можно превратить в шар.
Однако, если мы хотим изменить топологический тип, то можно (и даже нужно) делать разрезы и склейки. Эти операции так часто применяются в топологии, что даже носят специальное название: «топологическая хирургия». Более того, практически любой интересный для изучения объект можно склеить из весьма простых кусков. Скажем, торическую поверхность можно получить склейкой нескольких треугольных кусков. А когда склейка будет закончена, места склеек будут определять некоторую «сеть» на торе. «Сеть», составленная из треугольников (естественно, криволинейных), называется «триангуляцией». Простейшая «сеть» на торе (рис. 37) не является триангуляцией, так как она получена не из треугольников, а из квадратов... точнее, из одного- единственного квадрата. Но этой беде легко помочь: когда мы выше делали операции в обратном порядке, надо было на исходном квадрате нарисовать диагональ (то есть вместо квадрата далее рассматриваются «два склеенных треугольника»). После двух вышеописанных склеек из этого квадрата получится триангуляция тора. Она состоит (хотя в это и трудно поверить) из двух граней, трех ребер и одной вершины (к которой подходят все шесть концов этих трех ребер!).
Можно порекомендовать слушателям купить свежеиспеченный бублик с маком и. прежде чем его съесть, внимательно осмотреть и понять, как именно проходят но его поверхности ребра данной триангуляции. Но специалист-тополог может представить себе эту триангуляцию даже с закрытыми глазами!
Проверьте, возьмите любую ненужную велосипедную камеру, разрежьте и попытайтесь развернуть. Сохранится тот факт, что грань выглядит как квадрат или как круг, то есть она. как говорят математики. :топологически ·тривиальна. Она выглядит почти как обычная плоская фигура. А вот если мы снимем ребро (т. е. сотрем его с поверхности тора) и потом разрежем по оставшемуся ребру, у нас возникнет нетривиальная фигура в виде кольца. (Кстати, слово «тривиальный» восходит к слову «тривиум», обозначающему начальный уровень образования в средневековых университетах.)
Колечко на плоскости (рис. 38) не является топологически тривиальным. у него внутри дырка. Получается, что нам запрещено убирать это ребро, потому что мы изменим тривиальный объект на нетривиальный. Математика прошла долгий путь, прежде чем смогла понять, чем формально квадрат отличается от кольца.
Но если мы примем к сведению этот путь, то сможем воспользоваться его результатами. Сможем сказать, что можно снимать ребро тогда и только тогда, когда объект, который возникает, будет топологически тривиален, то есть будет похож на квадрат но своей топологической структуре. Именно поэтому я не имею нрава стирать на торе ребро.
Итак, чему равно В^Р+Г для нашей картинки (рис. 38)? Сколько у нас вершин?
Слушатели: Одна.
А.С.: Граней?
Слушатель: 4?
А.С.: Нет, одна грань. Эта одна и та же грань. Посмотрите, из любой точки грани я могу пройти в любую другую, не пересекая рёбра. А это значит, что грань одна.
На торе сейчас всего одна грань, одна вершинка и два ребра. Поэтому ВР + Г = 0.
И всегда для тора будет ноль.
А к чему я приду на сфере, когда сниму все возможные ребра и вершины? Какой объект получится? (То есть мы не хотим останавливаться на сети в виде двух граней, охватывающих сферу сверху и снизу, как выше, а хотим сделать ее еще проще.) Я утверждаю, что в итоге останется просто голая сфера с одной вершиной. Все ребра будут сняты.
Слушатель: И как получится два?
А.С.: Вот как. У вас одна вершина, одна грань и ноль ребер.
Почему я не могу снять и точку тоже? Потому что, если я ее сниму, останется сфера, которая топологически не похожа на ква-
0 + 1 = 2 (см. рис. 39).
драт. А вот, если я сферу проколол... Что происходит с камерой мяча, который проткнули иголкой? Ои сдувается и превращается (если сильно увеличить место прокола и наложить на плоскость) в лоскут в плоскую фигуру. Сфера отличается от плоского куска только одной точкой. Очень хорошо это понимают грузины, буряты и тувинцы. Они делают большие пельмени (хинкали. позы и буузы).