Генезис. Небо и Земля. Том 1. История - Максим Филипповский 15 стр.


§115. Пьер-Симон Лаплас (1814) предложил мысленный эксперимент: «Мы можем рассматривать настоящее состояние Вселенной как следствие его прошлого и причину его будущего. Разум, которому в каждый определённый момент времени были бы известны все силы, приводящие природу в движение, и положение всех тел, из которых она состоит, будь он также достаточно обширен, чтобы подвергнуть эти данные анализу, смог бы объять единым законом движение величайших тел Вселенной и мельчайшего атома; для такого разума ничего не было бы неясного и будущее существовало бы в его глазах точно так же, как прошлое». [216] Такой разум часто называют Демоном Лапласа, а описание гипотетического разума в качестве демона принадлежит не Лапласу, а его поздним биографам. [217] Хотя Лаплас видел предстоящие практические проблемы человечества в достижении этой наивысшей степени знания и развития вычислительной техники, поздние представления о квантовой78 механике (Принцип неопределённости), которые были приняты философами в защиту существования свободы воли, также оставляют теоретическую возможность опровержения существования такого «разума». Из этого эксперимента вытекает парадокс, по которому расчет будущего, занимающий определенное время, должен учитывать время на производство непосредственно самого расчета и знать заранее результат такого расчета79. Предсказывая будущее и будучи материальным, демон Лапласа не может предсказывать будущее.

§116. Из закона Дэйвида Брюстера (1815) следует, что луч, падающий под определенным углом к отражающей поверхности, при отражении полностью поляризуется в плоскости, параллельной этой поверхности. [218,219] Угол падения, при котором происходит полная поляризация отраженного и преломленного света, называется углом Брюстера, и его тангенс равен коэффициенту преломления отражающего вещества. Даже при углах падения, заметно отличающихся от угла Брюстера, свет в значительной мере поляризуется, но в этом случае и для преломленного, и для отраженного луча характерна эллиптическая поляризация.

§117. После прочтения работ Френеля Томас Юнг (1817) пришёл к выводу, что поляризация может быть исчерпывающе объяснена только если допустить, что световые колебания происходят перпендикулярно к распространению волны, а не вдоль, как считалось после Гюйгенса. [220] О своём выводе Юнг сообщил в письме Араго, и тогда же аналогичный вывод сделал и Френель. Свой мемуар он представил Французской Академии в 1821 году, что привело к спору о приоритете, длившемуся около десятилетия. [221]

§118. Огюстен Жан Френель (1818), дополняя Гюйгенса и используя наработки Янга и Араго, ввел представления о когерентной80 интерференции элементарных волн, излучаемых вторичными источниками, что дает возможность рассматривать дифракционные явления и позволяет решать простейшие задачи дифракции света. [222,223] Закон прямолинейного распространения света объясняет образование тени и полутени, а закон отражения справедлив для зеркального отражения. В 1821 году Френель создал волновую теорию поляризации света, доказав поперечность световых волн. [224] В 1823 году установил законы изменения поляризации света при его отражении и преломлении (формулы Френеля). [225] Для своих опытов он изобрел несколько новых интерференционных приборов: зеркала Френеля, бипризма Френеля, линза Френеля.

§119. Пьер Луи Дюлонг совместно с Алексисом Терез Пети в 1819 году установили закон теплоёмкости твёрдых тел. [226] Согласно данному закону, произведение удельных теплоёмкостей простых твёрдых тел на атомную массу образующих элементов есть величина постоянная81. Дюлонг и Пети показали, что массовые теплоемкости металлических элементов обратно пропорциональны их атомным массам, что способствовало изучению атомных масс при разработке периодической таблицы. Закон выводится в предположении, что кристаллическая решетка тела состоит из атомов, каждый из которых совершает гармонические колебания в трёх направлениях, определяемыми структурой решетки, причём колебания по различным направлениям абсолютно независимы друг от друга82.

§120. В 1818 году Пуассон на основе предложенной Френелем теории высказал предположение, что за большим круглым непрозрачным телом прямо в середине его геометрической тени должно возникать небольшое светлое пятно. Пуассон, ссылаясь на очевидную абсурдность этого результата, хотел использовать такое следствие, как главный аргумент против теории дифракции Френеля. Однако Араго (1819) поставил эксперимент, подтвердивший это предсказание Пуассона. [227] В итоге этот результат, ставший известным как пятно Араго  Пуассона, оказался весомым аргументом в пользу новой волновой теории и решающим доказательством правильности теории дифракции.

§119. Пьер Луи Дюлонг совместно с Алексисом Терез Пети в 1819 году установили закон теплоёмкости твёрдых тел. [226] Согласно данному закону, произведение удельных теплоёмкостей простых твёрдых тел на атомную массу образующих элементов есть величина постоянная81. Дюлонг и Пети показали, что массовые теплоемкости металлических элементов обратно пропорциональны их атомным массам, что способствовало изучению атомных масс при разработке периодической таблицы. Закон выводится в предположении, что кристаллическая решетка тела состоит из атомов, каждый из которых совершает гармонические колебания в трёх направлениях, определяемыми структурой решетки, причём колебания по различным направлениям абсолютно независимы друг от друга82.

§120. В 1818 году Пуассон на основе предложенной Френелем теории высказал предположение, что за большим круглым непрозрачным телом прямо в середине его геометрической тени должно возникать небольшое светлое пятно. Пуассон, ссылаясь на очевидную абсурдность этого результата, хотел использовать такое следствие, как главный аргумент против теории дифракции Френеля. Однако Араго (1819) поставил эксперимент, подтвердивший это предсказание Пуассона. [227] В итоге этот результат, ставший известным как пятно Араго  Пуассона, оказался весомым аргументом в пользу новой волновой теории и решающим доказательством правильности теории дифракции.

§121. Ханс Кристиан Эрстед (1819) в ходе своих опытов обнаружил, что провод, по которому течет электрический ток, вызывает отклонение постоянного магнитного диполя, помещенного вблизи него. [228] В 1820 году Жан-Батист Био и Феликс Савар экспериментально установили величину модуля вектора магнитной индукции в выбранной точке, произвольно находящейся в магнитном поле, которое при этом создано постоянным током на некотором участке. [229] Лаплас придал общую математическую формулировку такому закону в виде количественной связи между индукцией магнитного поля в некоторой точке пространства и порождающим ее элементом тока, и показал, что с помощью этого закона можно вычислить магнитное поле движущегося точечного заряда (считая движение одной заряженной частицы током). Закон используется для вычисления в трехмерном пространстве результирующего магнитного поля, генерируемого постоянным током. Постоянный ток  это непрерывный поток зарядов, который не изменяется со временем, заряд ни накапливается, ни истощается ни в одной точке. Закон является физическим примером линейного интеграла, оцениваемого по пути, по которому протекают электрические токи (например, по проволоке). [230]

§122. Явление броуновского движения, названо по имени его открывателя Роберта Броуна (1827), который установил, что малые частицы взвеси  пылинки хаотично движутся под воздействием ударов молекул жидкости. [231,232] Интенсивность броуновского движения увеличивается с повышением температуры, уменьшением вязкости среды, уменьшением размера частиц. Оно не зависит от химической природы частиц и времени наблюдения. Броуновское движение служит доказательством существования еще более мелких частиц  молекул жидкости, невидимых даже в самые сильные оптические микроскопы.

§123. В 1829 году Томас Грэм провел серию экспериментов по эффузии83 и обнаружил, что при постоянных температуре и давлении скорость истечения газа обратно пропорциональна квадратному корню из плотности газа. [233] Грэм вывел закон: чем меньше плотность идеального газа, тем больше скорость его истечения через микроскопические отверстия в стенках сосуда. Теперь закон об относительной скорости истечения разных газов из одинаковых сосудов сформулирован так: чем меньше относительная молекулярная масса газа, тем выше скорость эффузии. [234] Закон Грэма нашел применение и при конструировании космических кораблей, предназначенных для длительного нахождения человека в космосе.

§124. Карл Фридрих Гаусс (1829) в работе «Об одном новом общем законе механики» постулировал принцип наименьшего принуждения84, сформулировав, что «движение системы материальных точек, связанных между собой произвольным образом и подверженных любым влияниям, в каждое мгновение происходит в наиболее совершенном, какое только возможно, согласии с тем движением, каким обладали бы эти точки, если бы все они стали свободными, то есть происходит с наименьшим возможным принуждением, если в качестве меры принуждения, применённого в течение бесконечно малого мгновения, принять сумму произведений массы каждой точки на квадрат величины её отклонения от того положения, которое она заняла бы, если бы была свободной». [235].

Назад Дальше