Палеонтология антрополога. Три эры под одной обложкой - Станислав Дробышевский 6 стр.


Впрочем, и цианобактерии возникли в том же архее, только, видимо, чуть попозже, ближе к 3 млрд л.н. или даже ещё ближе к современности 2,72,5 млрд л. н. В любом случае древнейшие химические следы хлорофилла из серии Фиг Три в горах Барбертон в Южной Африке имеют возраст 3,2 млрд л. н. С этого момента началась новая жизнь. Первые цианобактерии, судя по различию генов и ферментов в разных современных классах, были анаэробами и не умели фотосинтезировать, но всё же научились да ещё как! Самое важное, что цианобактерии изобрели оксигенный фотосинтез, то есть такой, при котором выделяется кислород. В последующем это стало залогом нашего появления.

Маленькая тонкость

Почему растения зелёные? Одним из первых назначений пигментов в клетках могла быть просто защита от губительного ультрафиолета. Но в последующем энергия поглощаемого света стала использоваться для синтеза углеводов. А свет бывает разный. Синие фотоны (физики возмутятся такой формулировкой, но что поделать так короче и нагляднее) высокозаряженные, несут много энергии, но хорошего много не бывает, Солнце-то у нас жёлтое. Так что они вкусные, но их мало. Красные фотоны низкозаряженные, зато их навалом, как всегда бывает с халтурой; их тоже хорошо использовать. Зелёные же фотоны и не сильно полезные, и не так уж их много, так что их можно не поглощать, а отражать. Отраженный свет попадает нам в глаз и мы видим зелёное растение.

Важно, что даже самые первые известные живые существа уже жили сообществами. В палеонтологическом виде их находят в виде строматолитов «слоистых камней». Сейчас строматолиты тоже существуют, они известны, например, у берегов Австралии и в Карибском море. Правда, в зависимости от конкретных условий местности бактерии на поверхности строматолита могут быть разными, но принципиальная суть у них одна.

Стандартный строматолит выглядит как круглый камень на ножке, стоящий неглубоко в воде и покрытый невнятной слизью. Слизь же бывает разная, но часто состоит из трёх слоёв. Самый наружный составлен бактериями-фотосинтетиками, которые используют свет для получения энергии, из окружающей воды берут, что им надо для жизни, перерабатывают это и гадят под себя. Во втором слое сидят бактерии, часто тоже фотосинтетики, так как сквозь первый слой какое-то количество света проходит; они используют то, что упало им на «головы», перехимичивают ещё разок и получают ещё немного энергии, а потом, ясно, гадят дальше. Третий слой самый несчастный, он сидит в темноте, а в том, что достаётся ему сверху, энергии уже совсем мало. Поэтому на выходе от бактерий третьего слоя получается совсем уж безыдейный осадок, который смешивается со всякой бесполезной грязью, оседающей из воды, и превращается в минеральный слой. После тысяч лет такой карусели получается слоистый булыжник, который, если его распилить, выглядит очень красиво.

В современных строматолитах первый слой обычно аэробный, то есть использует кислород для дыхания. Но бактерии архейских строматолитов не могли быть такими по той простой причине, что кислорода в воде и атмосфере почти не было. Другое дело третий, самый глубокий слой ему, кроме прочего, должна была доставаться и неслабая доля кислорода, выделявшегося верхними фотосинтетиками в качестве отходов жизнедеятельности. Чтобы жить в таких зверских условиях, для начала надо было научиться защищаться от ужасного кислорода. После же какие-то самые ловкие жители подвала научились этот кислород использовать; правда, произошло это уже в протерозое.

Забавно, что кроме обычных строматолитов в докембрийских отложениях обнаруживаются и другие варианты микробных сообществ. Один из странных вариантов онколиты, устроенные принципиально как строматолиты, но без прикрепительной ножки, шаровидные, с концентрической слоистостью. Как такое могло получиться не вполне очевидно. Они не могли быть плавающими, ведь камень тяжелее воды. Обычно пишется, что онколиты свободно перекатывались по дну в прибойной зоне, но это тоже странно: отчего они нигде не застревали, и как бактерии не давились под весом камня и при ударах обо всё окружающее? Другое непонятное явление катаграфии карбонатные комки изменчивой формы, неслоистые, но с некой внутренней неоднородностью; видимо, это результат жизнедеятельности колоний бактерий или водорослей, часть же может быть копролитами, хотя, конечно, это не относится к архейским формам.

Как вы там, потомки?

Представить, как выглядели типичные проявления жизни в архее, можно, посмотрев на дно и берега современных термальных источников, например, в камчатской Долине гейзеров или в вайомингском Йеллоустоне там практически нет эукариот, зато полно бактерий и архей. Некоторые такие прокариотные сообщества очень красивы: жёлтые, оранжевые, переливающиеся в зависимости от того, какого элемента много в данной конкретной луже серы, железа или чего-то ещё.

Мы не так много знаем о жизни в архее, но это не значит, что жизни тогда было не много. По некоторым оценкам, продуктивность даже раннеархейских экосистем была вполне сопоставима с современными. Выдвинуто предположение, что именно докембрийские бактерии маленькие, да удаленькие создали основные запасы нефти и природного газа, которыми мы до сих пор пользуемся как главными источниками энергии; впрочем, довендские породы слишком долго и сильно менялись, чтобы те залежи дошли до нас в исходном виде. В составе клетки прокариот липидов и липоидов больше, чем в эукариотах, а именно липиды и липоиды основа нефти. В отсутствие эукариотической конкуренции археям и бактериям жилось вольготно, тем паче, что на свежей, только с пылу с жару, ещё не утрамбованной планете многие химические вещества были гораздо доступнее, чем сейчас.

* * *

В архее достоверно появились клеточная жизнь, фотосинтез и способность к симбиозу, которые стали залогом будущей многоклеточности. Понятно, что хорошо бы разделить все эти события по более подробным полочкам, но пока у нас катастрофически не хватает данных. В архее начали формироваться запасы углеводородной энергии, позволяющие нам строить нынешнюю цивилизацию, изучать прошлое и пытаться освоить другие планеты.

Альтернативы

Клеточная жизнь архея запросто могла застопориться в самом начале. Первые бактерии могли быстро израсходовать запасы абиогенной органики и вымереть, так и не научившись продуцировать новое вещество хемо- и фотосинтезом. Они могли не научиться взаимодействовать и организовываться в строматолиты. «Поздняя тяжёлая бомбардировка» могла стереть зачатки жизни и превратить планету в выгоревший полигон. Между 2,94 и 2,909 млрд л. н. произошло как минимум три оледенения, вероятно, были и другие. Каждое из них могло закончиться фатально для неокрепшей ещё жизни. Сколько возможностей пропасть! Как мал шанс выжить! Что сказать, наши предки и, стало быть, мы были очень везучи.

Протерозой

2,50,541 миллиарда лет назад: Половина истории жизни

МЕЖДУНАРОДНАЯ ШКАЛА:

2,5 млрд л.н.  палеопротерозой: сидерий 2,3 рясий 2,25 орозирий 1,8 статерий 1,6 мезопротерозой: калимий 1,4 эктазий 1,2 стений 1 неопротерозой: тоний 0,72 криогений 0,635 эдиакарий 0,541


РОССИЙСКАЯ ШКАЛА:

2,5 млрд л.н.  раннепротерозойский эон: нижнекарельская эра 2,1 верхнекарельская эра 1,65 позднепротерозойский эон: рифей: нижнерифейская эра 1,35 среднерифейская эра 1,03 верхнерифейская эра 0,6 венд: ранний венд поздний венд


Протерозой два миллиарда лет, половина истории жизни на планете и при этом самая скучная половина. Полтора миллиарда лет до него в гадее и архее жизнь только появлялась и представляла собой в лучшем случае бактерий, после него полмиллиарда лет фанерозоя были самым весёлым и бурным временем. А вот протерозой подкачал. Смотря на его почти пустые толщи, становится грустно от сознания, что при зарождении жизни на любой планете наиболее вероятная её участь именно такова. Склизкие бактериальные плёнки, в лучшем случае водоросли и нелепые живые блины. Нет никакой гарантии развития чего-то более приличного, нам невероятно повезло, что под конец этого тоскливого этапа жизнь всё-таки раскачалась и чуть погодя дошла до нас, способных осознать масштаб нашей удачливости.

* * *

Граница архея и протерозоя ознаменовалась завершением формирования континентальной коры и подъёмом континентов над водами морскими, что по-своему приятно, ведь это гарантирует большее количество отложений, доступных для исследования. Кроме прочего, это привело к распространению наземного вулканизма и изменению состава воды и атмосферы, так как подводные вулканы выбрасывают много сероводорода и железа, а наземные больше оксидов серы. Раньше лёгкий сероводород улетучивался в атмосферу, а железо погружалось в воды океана, причём и газ, и железо окислялись, поглощая кислород. Теперь более тяжёлые оксиды железа взаимодействовали с водой, сероводород превращался в серную кислоту, всё это распадалось на водород, улетавший в космос, и серный анион, который растворялся в воде и взаимодействовал с болтавшимся там железом, которое в итоге осаждалось в виде пирита (то есть сульфида железа). Кислород высвобождался, да к тому же всё время добавлялся фотосинтезирующими цианобактериями. Какое-то время кислород ещё продолжал уходить на окисление всего подряд, но с некоторого момента стал накапливаться. По пути же сформировались крупнейшие месторождения железа в железистых кварцитах.

Одним из важнейших следствий стало формирование озонового слоя. Обычный молекулярный кислород в верхних слоях атмосферы, поглощая ультрафиолет, превращался в озон, а ультрафиолет, закономерно, не доходил до земли. Замечательно, что кислород поглощает самую злую часть спектра, наиболее опасную для нуклеиновых кислот. Благодаря этому жизнь смогла подняться ещё ближе к поверхности воды и донного осадка. Правда, существенно всё это сказалось уже к самому концу протерозоя.

В начале же кислород только накапливался. Процесс этот был, конечно, не мгновенный, но и не очень-то плавный. Довольно резко он ускорился между 2,4 и 2,1 млрд л. н. Показательно, что этот же интервал 2,42,2 млрд л. н.  время гуронского оледенения, а само оледенение было частично вызвано ровно теми же процессами. Накапливавшийся из-за совокупной деятельности вулканов и фотосинтетиков кислород окислял метан, который до этого был главным парниковым газом, поднимавшим температуру планеты. Да и Солнце в то время ещё не раскочегарилось по полной и светило на четверть, а то и на треть слабее нынешнего. Плюс к этому части прежнего Ура между 2,72,6 и 2,52,4 млрд л. н. собрались в единый суперконтинент Моногею (известную также как Протогея и Кенорленд), перегородивший морские течения и нарушивший смешение воздушных масс на планете. Всё это, вместе взятое, и привело к мощнейшему оледенению, которое подкосило бытиё бактерий-метаногенов, что закономерно только усилило холода, так что средняя температура на планете стала примерно -40 °C. Конечно, так это выглядит при изображении широкими мазками, в реальности гуронское оледенение было не единым, профессиональные геологи говорят во множественном числе «гуронские оледенения», но пока мы не настолько подробно знаем историю, чтобы точно выделить определённые моменты и даже точно посчитать их, главных ледниковых периодов насчитывается не то три, не то четыре. Можно также упомянуть, что в позднеархейском гляциогоризонте группы Мозоан Южной Африки видно четыре пласта ледниковых отложений, а в раннепротерозойском грикватаунском ледниковом горизонте свите Диамиктиты Макганиене шесть.

2,32,1 млрд л. н. Моногея распалась на множество кусков, наступило потепление; чуть позже 2,08 2,06 млрд л. н.  содержание кислорода в атмосфере немножко спало. География продолжала меняться: 1,81,5 млрд л. н. из осколков Моногеи (среди которых самым большим была Атлантика слипшиеся Южная Америка и Африка), слепился новый суперконтинент Мегагея (Нуна, Колумбия, или Хадсонленд), 1,4 млрд л. н. она тоже развалилась, а 1,11,0 млрд л. н. собралась Мезогея (Родиния), которая 800750 млн л. н. раскололась на Лавразию на севере и Гондвану на юге, которые 650 млн л. н. продолжили дробиться дальше. Ясно, что за такие немеряные отрезки времени чего только не происходило, проблема в том, что знаний у нас очень мало.

К середине раннего протерозоя около 2 млрд л. н. средний уровень кислорода, несмотря на колебания, поднялся настолько, что разразилась кислородная катастрофа. Для живших до этого анаэробов кислород был ужасным ядом и подавляющая часть беззащитных созданий вымерла. Парадокс в том, что фотосинтетики сами уничтожили свою среду обитания, загадили мир кислородом и отравили себя. В этих условиях, как уже упоминалось, на коне оказались бывшие отщепенцы из нижнего слоя строматолитов, которые научились сначала защищаться от кислорода, а потом и использовать его. И это стало их триумфом. Как часто бывает, революция происходила несколькими параллельными путями. Например, сравнение дыхательных ферментов цианобактерий классов Sericytochromatia, Melainabacteria и Oxyphotobacteria (впрочем, иногда их классифицируют совсем иначе) показывает, что они изобрели кислородное дыхание независимо трижды.

Счастливые обладатели кислородного синтеза, или аэробного дыхания, совершили рывок из грязи в князи. При окислении выделяется много энергии: чтобы в этом убедиться, достаточно что-нибудь поджечь и сунуть в огонь палец вот она, мощь окисления! Вопрос только в том, как обуздать эту бездну энергии. Те, кто первые смогли зарегулировать новый источник силы, получили огромное преимущество: теперь они могли создавать гораздо больше органических веществ за меньший отрезок времени. А это позволило кооперироваться. А это стало залогом появления эукариот, то есть клеток с ядром.

* * *

Ядерные организмы возникли 2,11,9 млрд л. н. (по самым смелым оценкам даже 2,7 млрд л. н., но это вряд ли). Судя по составу генов современных существ, эукариоты стали своеобразными химерами-матрёшками, включившими в свой состав много компонентов. Большая часть ядерных генов и цитоплазма достались нам от анаэробного архейного предка, а митохондрии и (у самых везучих) пластиды от аэробных бактерий. Обычно упрощённо это преподносится так, что то ли некая архея съела бактерий, но недопереварила, то ли бактерии были внутриклеточными паразитами, а архея заизолировала их в вакуоли. В последующем бывшие цианобактерии, а ныне пластиды стали использоваться как генераторы глюкозы, а альфапротеобактерии митохондрии как производители АТФ. При этом те и другие сохранили кольцевую ДНК и собственные бактериальные рибосомы, а у глаукофитовых водорослей пластиды-цианеллы имеют даже муреиновую клеточную стенку, типичную для бактерий.

Сейчас митохондрии нужны нам как органеллы, которые умеют с использованием кислорода производить АТФ, то есть батарейку отличный переносчик энергии. Изначально же, скорее всего, они просто поглощали ужасный кислород и тем защищали архейную клетку от отравления. Потом оказалось, что при утилизации яда выделяется немало энергии, которую можно использовать на мирные цели. Митохондрии у всех эукариот одинаковые, так что были включены в наш состав лишь однажды.

Как вы там, потомки?

С пластидами сложнее они были обретены как минимум дважды: некими зелёными водорослями и отдельно амебоидом Paulinella. Далее пластиды бурно эволюционировали, так что сейчас существует великое их разнообразие, из которого каждому школьнику близки, конечно, хлоропласты. Довольно быстро возникли красные водоросли, а после пластиды передавались от одних эукариот другим путём вторичного и третичного эндосимбиоза, когда новые халявщики поглощали уже эукариотические красные и зелёные водоросли или даже тех, кто поглотил их до этого, образуя хитрые матрёшки, из которых самой замечательной является, конечно, динофлагеллята Durinskia, включающая в себя как минимум пять организмов. Кроме того, сейчас известна масса существ, в которых цианобактерии и водоросли живут как симбионты, но ещё не достигли такой степени консолидации с хозяином, чтобы называть их пластидами: лишайники; золотые медузы Mastigias papua и лунные медузы Aurelia с водорослями-зооксантеллами Symbiodinium; черви-турбеллярии Convoluta с зоохлореллами; слизни Elysia chlorotica, поедающие водоросли Vaucheria litorea и оставляющие себе их хлоропласты (причём геном слизня кодирует некоторые белки, необходимые хлоропластам для фотосинтеза); моллюски тридакны с зооксантеллами и многие прочие. Некоторые пластиды, напротив, эволюционировали намного дальше: у динофлагелляты Kryptoperidinium они превратились в светочувствительный глазок, у споровиков Toxoplasma gondii и Plasmodium falciparum стали апикопластами синтезаторами жирных кислот.

Назад Дальше